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Abstract

The computational cost required to simulate the pantograph-catenary dynamic
interaction can be a limiting factor in certain applications. Specifically, for Hardware-
in-the-Loop (HIL) simulations, real-time capabilities of the software are imperative.
In this paper a combination of a modal coordinate approach with an offline/online
strategy to build a very efficient simulation strategy is proposed. This novel ap-
proach preserves the accuracy of the results, compared with those obtained by
classical finite element strategies. Furthermore, a procedure to define and validate
a criterion for a priori truncation of the modal basis and an analysis of the effect
of explicit treatment of the interaction force are also presented. The results show
that the method proposed could be used to perform pantograph HIL tests.
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1. Introduction

The overhead contact line, commonly known as the catenary, is the system in charge of
supplying power to the locomotive by means of a sliding interaction with the pantograph,
which is located on the roof of the locomotive. The coupled pantograph-catenary dynamic
behaviour can be a limiting factor when intending to increase the service speed [1]. Thus,
the design of such systems [2] is aimed to provide the most uniform interaction force as
possible to prevent both wearing of the contact surfaces and arcing, with the consequent
damage and power supply deterioration.

Today, the numerical simulation of the pantograph-catenary dynamic interaction is a
well-established technique, as evidenced by the existence of specific standards [3] and
the completion of the benchmark exercise [4]. These simulation tools can be used to
speed up the catenary design process since the effect on the dynamic behaviour of varying
geometrical and material parameters can be efficiently evaluated. Usually, the models used
in the simulation codes assume certain simplifications of the real systems. Regarding
the pantograph, a linear lumped mass model is commonly used [4], in which the non-
linear effects of friction, bump stops, actuating system, etc... [5], and the flexibility of the
pantograph elements [6,7], are rarely considered. In any case, they are taken into account
with uncertainty in the model parameters.

Another issue related to the pantograph is the large number of field tests required to fulfil
regulations for its homologation to be used in a given locomotive. These tests usually
need a long time and high investment to be carried out. In this sense, Hardware-in-the-
Loop (HIL) simulation is revealed to be a promising tool to palliate both the uncertainty
in the pantograph modelling and the large number of expensive in-line tests [8]. These
hybrid simulations consist of the interaction of a real pantograph device with a simulated
catenary numerical model.

During the last decade, some authors have proposed different strategies to deal with this
problem. The first research into this field can be found in [9], in which the catenary
displacement is expressed as a sum of sine terms and the dropper slackening is not con-
sidered. Later, the group of Professor Bruni presented several publications regarding HIL
pantograph tests [?, 10–13]. They include realistic effects such as dropper slackening and
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contact wire stagger, and proposed a ‘shift-forward’ procedure to run the simulations be-
yond the limited section of the catenary modelled. More recently, Schirrer et al. [14, 15],
presented a high-speed pantograph test rig to perform HIL tests with a novel catenary
representation in moving coordinates. In this case, they propose the use of absorbing
boundary conditions to allow the use of a limited computational catenary domain.

The goal of this paper is to improve the catenary models that can be used for HIL
tests, i.e. to provide a simulation strategy able to simulate the dynamic response of a
whole catenary section in real-time, while keeping the accuracy of the results compared
with those obtained in the standard finite element simulations. Although the proposed
approach is based on that presented in [16], in this work, the catenary coordinates are
projected to a modal basis which can be properly truncated. The modal truncation
along with an efficient dynamic integration strategy provide the model with the necessary
features to be a candidate in an HIL set-up.

The paper is organised as follows. The real-time model is presented in Section 2, with
special emphasis on the modal coordinate transformation and all the calculations per-
formed at each stage of the method. The adaptation of the algorithm to explicitly deal
with the interaction force, is described and validated in Section 3. As accuracy is the main
pillar of the method proposed in this paper, Section 4 is fully devoted to expose different
modal basis truncation techniques and their repercussions in the accuracy of the results.
Then, an analysis of the computational time required by the proposed simulation method
is conducted in Section 5. Finally, some concluding remarks are provided in Section 6.

2. The real-time simulation method

The proposed algorithm is based on the efficient Offline/Online simulation strategy pre-
sented in [16], but some changes that improve the computational cost by a factor of 5 are
introduced here. In particular, the degrees of freedom (DOF) of the catenary model are
projected to a modal basis and a new parameter is defined to truncate this modal basis
without compromising the accuracy of the simulations.

The following sections are devoted to thoroughly presenting the calculations performed
during each of the steps of the simulation method presented.
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2.1. The pantograph-catenary dynamic interaction problem

Regarding the numerical models of the different subsystems that appear in this prob-
lem, the Finite Element Method (FEM) is used to model the catenary. Specifically, the
Absolute Nodal Coordinate Formulation (ANCF) proposed in [17] is adopted in this work.

The pantograph is modelled by a lumped-parameter model, which only introduces vertical
DOF, whereas the interaction between the pantograph and the catenary models is accom-
plished by using the penalty method. A scheme of such a model is provided in Figure 1.
The interested reader is referred to [16] for a detailed description of the formulation of
these mathematical models.

Figure 1: Catenary, pantograph and interaction models.

When designing a catenary, some targets, such as the height of the points at which the
contact wire is connected to the droppers or the initial tension of the messenger and con-
tact wires, are set for the catenary subjected to the gravity load. Thus, before addressing
the pantograph-catenary interaction problem, the initial configuration of the catenary
must be obtained. Among the different options in the literature to set and solve this
so-called ‘shape-finding’ problem, the procedure proposed in [18] is used in this work, in
which the nodal coordinates and the element lengths, fulfilling both the equilibrium equa-
tions and the aforementioned constraints imposed during catenary stringing, are obtained
after solving a non-linear problem.

Due to the fact that the pantograph-catenary interaction dynamics is governed by small
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displacements, dynamic equations can be linearised with respect to the initial configura-
tion, leading to the following semi-discrete system of differential equations:

Müt + Ctu̇t + K̄tut = Ft (1)

which models the coupled behaviour of the whole system. The nodal DOF of displacement
are denoted by ut, and their first and second time derivatives by u̇t and üt respectively. M
is the constant mass matrix, K̄t is the stiffness matrix and Ft is the external force vector.
The catenary damping is considered in the matrix Ct with a proportional Rayleigh model.
The superscript t denotes the time dependence henceforth.

Despite the linearisation process followed to obtain Eq. (1), there are two severe non-
linearities in the system that must be taken into account, namely pantograph-catenary
interaction including possible contact loss and dropper slackening. They cause the stiffness
matrix (and therefore the damping matrix due to the Rayleigh assumption) as well as the
external force vector to depend on time.

The first unilateral behaviour of the system is produced by the sliding contact between the
pantograph and the contact wire and the possibility of having pantograph detachments.
If kh is the penalty stiffness and zt

1 and zt
cw are the vertical absolute coordinates of the

top mass of the pantograph and the contact point on the contact wire (see Figure 1),
respectively, the non-linear interaction force is:

f t
int =

 kh (zt
1 − zt

cw) if zt
1 > zt

cw

0 if zt
1 ≤ zt

cw

(2)

The vertical absolute coordinates are defined as the sum of the vertical position for the
configuration at which the problem is linearised (in this case the initial configuration) and
the vertical displacement with respect to this configuration. Specifically, for the top mass
of the pantograph model and the interaction point on the contact wire, this means:

zt
1 = z0

1 + ut
1

zt
cw = zt

cw,0 + ut
cw

(3)

where zt
cw,0 depends on time because the contact point on the contact wire evolves in

time while the pantograph moves forward and z0
1 has been chosen to match with z0

cw,0,
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i.e. the vertical position of the catenary interaction point when t = 0. With the previous
definitions, the interaction force becomes:

f t
int =

 kh

(
z0

1 − zt
cw,0

)
+ kh (ut

1 − ut
cw) = f t

int,0 + kh (ut
1 − ut

cw) if zt
1 > zt

cw

0 if zt
1 ≤ zt

cw

(4)

When the two terms making up the interaction force are assembled to the global size
problem (1), they contribute to the external force vector and the global stiffness matrix
with Ft

int0 and Kt
int respectively, so that

K̄t = Kt + Kt
int Ft = Fext + Ft

int0 (5)

in which Kt considers the catenary and the pantograph stiffness and Fext represents the
constant force applied to the pantograph by its uplift mechanism. The construction of all
these matrices and vectors are detailed in [16].

The second non-linearity comes from droppers which, like any cable, are not able to
undergo compressive forces. Given that Eq. (1) has been obtained from linearising with
respect to the initial configuration position, as proposed in [19], the non-linear behaviour
of droppers can be assimilated to the bilinear curve shown in Figure 2, where fdj,0 > 0
denotes the traction force of the dropper j in the initial configuration position.

Figure 2: Bilinear force-elongation curve for droppers.

With this simplification, the force transmitted by the j-th dropper element, f t
dj, can be
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obtained from its stiffness matrix kdj and the DOF vector ud
t
j, is:

f t
dj =

 〈kdjud
t
j〉 if 〈kdjud

t
j〉 > −fdj,0

−fdj,0 if 〈kdjud
t
j〉 ≤ −fdj,0

(6)

where the operator 〈 · 〉 extracts the force of the lower node and projects it to the direction
of the dropper.

If the Newmark method is used to solve Eq. (1), given the solution at time-step t− 1, i.e.
ut−1, u̇t−1 and üt−1, the solution at time t can be obtained through:

Kt
IT ut = Ft

IT (7)

where

Kt
IT = K̄t + b4Ct + b1M

Ft
IT = Ft + M (b1ut−1 + b2u̇t−1 + b3üt−1) + Ct (b4ut−1 + b5u̇t−1 + b6üt−1)

(8)

The coefficients bi, i = 1, ..., 6 are:

b1 = 1
β∆t2 b2 = − 1

β∆t b3 = 1− 1
2β

b4 = γ∆t b1 b5 = 1 + γ∆t b2 b6 = ∆t(1 + γb3 − γ)
(9)

and depend on the time-step size ∆t, and the Newmark method parameters β = 0.25
and γ = 0.5, which ensure unconditional stability for linear time-invariant systems and
second-order accuracy of the method.

Due to the aforementioned two non-linearities of the problem, Eq. (7) must be solved
iteratively. In each time-step t, if N t,i

sd droppers are slackened in the current i-th iteration,
the stiffness and damping matrices along with the external force vector present in Eq. (8)
need to be modified as:

Kt
i+1 = Kt −

Nt,i
sd∑
j

Kdj Ct
i+1 = Ct −

Nt,i
sd∑
j

Cdj Ft
i+1 = Ft +

Nt,i
sd∑
j

Fdj,0 (10)

where Kdj, Cdj and Fdj,0 are the stiffness matrix, the damping matrix and the force
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vector in the initial configuration of the slackened dropper j, respectively, expanded to
the problem global size.

Then, the contact state of the pantograph needs to be checked by applying Eq. (2). If
contact loss occurs, Ft

int0 and Kt
int are set at null, and the iterative procedure follows

to obtain ut until two consecutive iterations provide with the same slackened droppers
and interaction force. Finally, the velocities and accelerations are computed following the
Newmark rules:

u̇t = b4(ut − ut−1) + b5u̇t−1 + b6üt−1

üt = b1(ut − ut−1) + b2u̇t−1 + b3üt−1
(11)

and the time integration process can move to the next time-step t+ 1.

Note that this direct procedure to solve the pantograph-catenary dynamic interaction
problem deals with the non-linearities by solving iteratively the global size system of
Eq. (7), in which the matrix Kt

IT needs to be modified in each iteration. This leads to a
computationally intensive algorithm which cannot be solved in real-time.

The first action to alleviate computational cost, consists of moving the non-linear terms
to the right hand side of Eq. (1) as proposed in [19]. This means moving the force related
to the pantograph-catenary interaction and the correction force of the slackened droppers
to the right hand side of Eq. (1), so that:

Müt + Cu̇t + Kut = Ft + Ft
int(ut) + Ft

d(ut) (12)

where
Ft

int(ut) = Ft
int0 −Kt

intut

Ft
d(ut) =

Nt
sd∑
j

Fdj,0 + Kdjut + Cdju̇t
(13)
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Eq. (12) can be split into pantograph ut
p, and catenary ut

c, DOF as:

Mc 0
0 Mp

üt
c

üt
p

+
Cc 0

0 Cp

u̇t
c

u̇t
p

+
Kc 0

0 Kp

ut
c

ut
p

 =
 0

Fext,p

+
Ft

int0,c

Ft
int0,p

−
Kt

int,cc Kt
int,cp

Kt
int,pc Kint,pp

ut
c

ut
p

+
Ft

d,c

0

 (14)

being Mc, Cc and Kc the mass, damping and stiffness matrices of the catenary system,
and Mp, Cp and Kp for the pantograph.

As can be seen in Eq. (14), the correction force of the slackened droppers Ft
d,c(ut

c), only
depends on the catenary DOF and the only link between catenary and pantograph is
present in the non-linear force due to interaction Ft

int(ut), which depends on both catenary
and pantograph coordinates. Furthermore, all the three matrices of the left hand side
are constant, and therefore when applying the Newmark integration scheme, the new
matrix KIT does not depend on time any more. Thereby, although in each time-step the
resulting system of equations needs to be solved iteratively, the LU factorisation of the
matrix KIT can be done only once. Furthermore, if the reverse Cuthill-McKee ordering is
applied, the bandwidth of the L and U matrices is reduced and all the nonzero elements
are concentrated near the diagonal, which reduces notably the computational cost of the
simulations as pointed out in [20], since solving the system is now performed with a
backward and forward substitution.

2.2. Modal basis formulation

In the search to reduce the computational cost of the simulations, the first ingredient used
in this work consists of projecting the catenary nodal coordinates to a modal basis. This
allows the matrix KIT to be diagonal, which contributes to increase the computational
efficiency of the simulations, and furthermore, the modal basis can be truncated, leading
to a reduction in the number of DOF of the problem.

For a catenary model with N DOF, by solving the generalised eigenproblem with the
matrices Mc and Kc, the eigenvectors Ψn and the natural frequencies ωn of the catenary,
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for n = 1, ..., N , can be obtained. Thus, the coordinate transformation results in:ut
c

ut
p

 =
Ψ 0

0 I

qt
c

ut
p

 → ut = Φqt (15)

where Ψ is the modal transformation matrix for the catenary coordinates, I is the identity
matrix and qt

c denotes the vector of catenary modal coordinates. As the size of the model
associated with the pantograph is small, their coordinates are kept in the physical space.

The coordinate transformation defined in (15) can be applied to Eq. (12), which becomes
into:

Mq̈t + Cq̇t + Kqt = Fext + Ft
int(qt) + Ft

d(qt
c) (16)

where the modal mass, damping and stiffness matrices:

M = ΦT MΦ C = ΦT CΦ K = ΦT KΦ (17)

have a diagonal block related to the catenary coordinates due to the orthogonality prop-
erties of the modal basis and the proportional damping model used. The modal force
vectors are:

Fext = ΦT Fext

Ft
int(qt) = Ft

int0 + Kt
intqt

Ft
d(qt

c) =
Nt

sd∑
j

Fdj,0 + Kdjqt
c + Cdjq̇t

c

(18)

where
Ft

int0 = ΦT Ft
int0 Kt

int = ΦT Kt
intΦ Fdj,0 = ΦT Fdj,0

Kdj = ΦT KdjΦ Cdj = ΦT CdjΦ
(19)

In terms of catenary and pantograph DOF, Eq. (16) can be now written as:

Mc 0
0 Mp

q̈t
c

üt
p

+
Cc 0

0 Cp

q̇t
c

u̇t
p

+
Kc 0

0 Kp

qt
c

ut
p

 =
 0

Fext,p

+
Ft

int,c(qt)
Ft

int,p(qt)

+
Ft

d,c(qt
c)

0

 (20)

which can be solved in time by using the Newmark time integration method.
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Regarding the catenary system and following the procedure defined in Section 2.1, if the
solution at time-step t− 1 is given, qt

c is obtained from:

KIT c qt
c = Ft

IT c (21)

where
KIT c = Kc + b4Cc + b1Mc

Ft
IT c = Ft

ini,c + Ft
int,c(qt) + Ft

d,c(qt
c)

(22)

and
Ft

ini,c = Mc

(
b1qt−1

c + b2q̇t−1
c + b3q̈t−1

c

)
+ Cc

(
b4qt−1

c + b5q̇t−1
c + b6q̈t−1

c

)
(23)

From Eqs. (21) and (22) is derived that qt
c can be written as the response to three force

terms, namely the force due to initial conditions Ft
ini,c, which is readily available since it

depends on information of time-step t− 1, the interaction force Ft
int,c(qt), which depends

on both the catenary and the pantograph DOF, and the correction force of slackened
droppers Ft

d,c(qt
c), which only depends on the catenary modal coordinates. As the matrix

KIT c is constant, the superposition principle is applied leading to:

qt
c = qt

ini,c + qt
int,c +

Nt
sd∑
j

qt
dj,c (24)

where the last two terms will be obtained as explained in Sections 2.3 and 2.4.

With regard to the pantograph dynamics, following the same strategy as for the catenary,
the solution ut

p can be obtained by solving the following system of equations:

KIT p ut
p = Ft

IT p (25)

in which
KIT p = Kp + b4Cp + b1Mp

Ft
IT p = Ft

ini,p + Ft
int,p(qt)

(26)

and

Ft
ini,p = Mp

(
b1ut−1

p + b2u̇t−1
p + b3üt−1

p

)
+ Cp

(
b4ut−1

p + b5u̇t−1
p + b6üt−1

p

)
+ Fext,p (27)

In this case, only two force terms appear, namely the known initial conditions force term
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Ft
ini,p and the interaction force contribution Ft

int,p(qt), which again depends on both the
catenary and the pantograph DOF. By applying the superposition principle, the solution
of the pantograph dynamics at time-step t can be split into:

ut
p = ut

ini,p + ut
int,p (28)

At this point, the contributions to the solution in Eqs. (24) and (28) coming from the
non-linear force terms (i.e. the interaction and the dropper slackening correction forces)
can be rewritten so that:

qt
c = qt

ini,c + f t
intq̃t

int,c +
Nt

sd∑
j

f t
djq̃dj,c

ut
p = ut

ini,p + f t
intũint,p

(29)

where q̃t
int,c, q̃dj,c and ũint,p are the displacements after one time-step t, produced by uni-

tary forces acting on the contact point of the contact wire, on the slackened droppers and
on the pantograph head, respectively. The values of the pantograph-catenary interaction
force and the correction force of the j-th slackened dropper, f t

int and f t
dj, depend on qt

and have to be solved by setting a system of equations.

The seven terms present in the right hand side of Eq. (29) are the unknowns to be
obtained to fulfil Eq. (21) along with Eqs. (2) and (6). The strategy used to compute
them is based on performing as many calculations as possible in an offline stage, in which
the computational cost is not a major issue, so that the subsequent online stage can be
carried out in real-time.

2.3. Offline calculations stage

The offline stage of the method is devoted to performing all the calculations prior to
the application of the time integration itself. In first place, the solution of the initial
configuration problem, the solution of the eigenvalue problem for the catenary system
and the modal basis projection are done in this initial stage.

However, the core of the offline stage is aimed at obtaining q̃t
int,c, q̃dj,c and ũint,p by
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solving single time-step problems with null initial conditions, in which a unitary load is
applied on specific points of the models. These problems are:

Figure 3: Unitary forces applied on the catenary (a), and the pantograph (b), to solve the
single time-step problems in the offline stage.

1. Response of the catenary under a unitary load applied on the interaction point (see
Figure 3a). Thus, as many problems as number of time-steps Nt need to be solved.
This set of problems has the following expression:

KIT cq̃t
int,c = ΨT F̃t

int,c = F̃t

int,c for t = 1, ..., Nt (30)

in which F̃t
int,c results from expanding to the catenary problem size the unitary

nodal force vector f̃ t
int,c = ST (χcw) · [0 0 1]T . Generally, as depicted in Figure 4,

the contact point does not match with a node, so that the shape functions matrix,
S(χcw), is used to relate the nodal displacements of the contact element with nodes
i and j (ut

i and ut
j respectively), with the displacements of the contact point with

local coordinate χcw:

ut
cw = S(χcw)

 ut
i

ut
j

 (31)

This matrix is composed of Hermitian polynomials which depend on the local coor-
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dinate χ. That is:

S(χ) = [S1I3|S2I3|S3I3|S4I3]

S1(ξ) = 1− 3ξ2 + 2ξ3 S2(ξ) = l0(ξ − 2ξ2 + ξ3)
S3(ξ) = 3ξ2 − 2ξ3 S4(ξ) = l0(−ξ2 + ξ3)

(32)

in which the coordinate ξ = χ/l0 ∈ [0, 1] denotes the normalised local coordinate
for an element with undeformed length l0, and I3 is the 3 × 3 identity matrix.

Figure 4: Unitary vertical force applied on the contact point of a contact cable element.

2. Response of the catenary under unitary compressive loads applied on the ends of
each dropper and aligned with it (see Figure 3a). In this case, the problem reads:

KIT cq̃dj,c = ΨT F̃dj,c = F̃dj,c for j = 1, ..., Nd (33)

which must be solved for any dropper of the catenary model. F̃dj,c is the result of
assembling the nodal unitary force vectors f̃dj,c to the catenary model size.

3. Response of the pantograph under a unitary load applied on the top lumped mass
(see Figure 3b). This problem is:

KIT pũint,p = F̃int,p (34)

and is only solved once because the interaction force always acts on the same de-
gree of freedom of the pantograph model. In this case, the force vector F̃int,p =
[−1 0 ... 0]T includes as many elements as DOF of the pantograph model.

It is important to mention that not only the displacements of the previous problems are
computed and stored, but also the modal velocities of the two problems related to the
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catenary are obtained following the Newmark rules:

˙̃qt

int,c = b4q̃t
int,c for t = 1, ..., Nt

˙̃qdj,c = b4q̃dj,c for j = 1, ..., Nd

(35)

Regarding the computational cost of these problems, problem number 3 is solved with neg-
ligible computational cost since the pantograph model usually has a few DOF. However,
the problems 1 and 2, which are related to the catenary, even though having a diagonal
matrix KIT c, are more time-consuming because the force term has to be projected to the
modal basis. Fortunately, this is not a big issue because this stage is performed offline,
and the calculation speed is not particularly important.

Following with the idea of performing as many calculations as possible in the offline stage,
there are other magnitudes that can be obtained before the time integration takes place,
leading to a reduction in the number of operations performed in the online stage.

During the online stage (Section 2.4), the force of dropper j will be evaluated as:

f t
dj = fdj,0 + 〈kdjut

dj + cdju̇t
dj〉 = fdj,0 + 〈kdjΨdjqt

c + cdjΨdjq̇t
c〉 (36)

where it is recalled that ut
dj is the nodal displacement vector of dropper j and the operator

〈 · 〉 extracts the force terms of the lower node and projects them to the direction of the
dropper. Furthermore, Ψdj is a submatrix composed of the six rows of Ψ linked to the
DOF of the dropper element j.

If Eq. (29) is placed into (36), the force transmitted through dropper j, in time-step t,
reads:

f t
dj = fdj,0 +

〈
kdjΨdj

qt
ini,c + f t

intq̃t
int,c +

Nt
sd∑
r

f t
drq̃dr,c

〉+

〈
cdjΨdj

q̇t
ini,c + f t

int
˙̃qt

int,c +
Nt

sd∑
r

f t
dr

˙̃qdr,c

〉
(37)

where qt
ini,c, q̃t

int,c and q̃dr,c were defined in Eq. (29).

To speed up the calculation of expression (37) in the online stage, it is possible to pre-
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compute and store the following terms for each of the Nd droppers of the model:

kdj = 〈kdjΨdj〉 cdj = 〈cdjΨdj〉
gt

int,j = kdjq̃t
int,c ġt

int,j = cdj
˙̃qt

int,c for t = 1, ..., Nt

gdjr = kdjq̃dr,c ġdjr = cdj
˙̃qdr,c for r = 1, ..., Nd

(38)

The interaction force will also be evaluated in the online stage as defined in Eq. (4). In
that expression, the vertical displacement of the contact point can be computed by the
use of the third row of Eq. (31) and the modal transformation matrix, so that:

ut
cw = S|3(χcw)

 ut
i

ut
j

 = S|3(χcw)Ψt
cwqt

c (39)

in which Ψt
cw is a submatrix composed of the 12 rows of Ψ related to the DOF of the

contact cable element in which the interaction is taking place in time-step t, and S|3(χcw)
is the third row of the shape functions matrix (see Eq. (32)) evaluated in the local coor-
dinate χcw. With the vertical displacement of the contact point obtained from the modal
coordinates, Eq. (29) can be placed into Eq. (4), leading to:

f t
int = f t

int0 + kh

ut
ini,1 + f t

intũint,1 − S|3(χcw)Ψt
cw

qt
ini,c + f t

intq̃t
int,c +

Nt
sd∑
j

f t
djq̃dj,c

 (40)

From the previous expression, the magnitudes:

Υt
cw = S|3(χcw)Ψt

cw

gt
int,cw = khΥt

cwq̃t
int,c

gt
int,dj = khΥt

cwq̃dj,c for j = 1, ..., Nd

(41)

can be calculated for each time-step of the simulation and stored to be used in the online
stage of the method.

2.4. Online time integration stage

The time integration of Eq. (16) takes place in this stage of the simulation, in which a real-
time solution is sought. Looking at the expressions (29), to obtain the nodal coordinates
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at time-step t, there are four terms which remain unknown, namely qt
ini,c, ut

ini,p, f t
int, and

f t
dj for j = 1, ..., N t

sd.

The two first terms can be available by solving the following systems of equations:

KIT c qt
ini,c = Ft

ini,c(qt−1
c , q̇t−1

c , q̈t−1
c )

KIT p ut
ini,p = Ft

ini,p(ut−1
p , u̇t−1

p , üt−1
p )

(42)

The first equation related to the catenary is a set of decoupled equations since the matrix
KIT c is diagonal because of the use of modal coordinates for the catenary. This is a
major advantage over the method proposed in [16] which allows the speeding up of the
calculations. The second system of equations in (42), related to the pantograph, is solved
quickly since it is composed only of a few number of equations.

Now, the values of the interaction force and the correction forces of each slackened dropper,
f t

int and f t
dj for j = 1, ..., N t

sd, are the only variables that need to be obtained. The
procedure followed to find them is based on setting and solving iteratively a small size
system of linear equations. The first equation of that system comes from Eq. (40), which,
after replacing the precomputed terms (41) and rearranging, becomes:

(
1− khũint,1 + gt

int,cw

)
f t

int +
Nt

sd∑
j

gt
int,djf

t
dj = f t

int0 + khũ
t
ini,1 − khΥt

cwqt
ini,c (43)

The rest of the equations are deduced from Eq. (37), again after considering the precom-
puted magnitudes in the offline stage (see Eq. (38)) and performing some manipulations.
The equation for the j-th slackened dropper, being j = 1, ..., N t

sd, reads as:

−
(
gt

int,j + ġt
int,j

)
f t

int −
(
gt

djj + ġt
djj + 1

)
f t

dj −
Nt

sd∑
r

r 6=j

(
gt

djr + ġt
djr

)
f t

dr =

fdj,0 + kdjqt
ini,c + cdjq̇t

ini,c (44)

Eqs. (43) and (44) can be written in a matrix form to build the linear system of equations:

Atf t
nl = bt (45)
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where

At =



1− khũint,1 + gt
int,cw gt

int,d1 gt
int,d2 · · ·

−gt
int,1 − ġt

int,1 −gt
d11 − ġt

d11 − 1 −gt
d12 − ġt

d12 · · ·
−gt

int,2 − ġt
int,2 −gt

d21 − ġt
d21 −gt

d22 − ġt
d22 − 1 · · ·

... ... . . . ...
−gt

int,Nt
sd

+ ġt
int,Nt

sd
−gt

dNt
sd

1 − ġt
dNt

sd
1 −gt

dNt
sd

2 − ġt
dNt

sd
2 · · ·

(46)

· · · gt
int,dNt

sd

· · · −gt
d1Nt

sd
− ġt

d1Nt
sd

· · · −gt
d2Nt

sd
− ġt

d2Nt
sd. . . ...

· · · −gt
dNt

sd
Nt

sd
− ġt

dNt
sd

Nt
sd
− 1



f t
nl =



f t
int

f t
d1

f t
d2
...

f t
dNt

sd


bt =



f t
int0 + kh

(
ũt

ini,1 −Υt
cwqt

ini,c

)
fd1,0 + kd1qt

ini,c + cd1q̇t
ini,c

fd2,0 + kd2qt
ini,c + cd2q̇t

ini,c
...

fdNt
sd

,0 + kdNt
sd

qt
ini,c + cdNt

sd
q̇t

ini,c


(47)

The linear system (45) is set and solved at each time-step. After the first iteration,
the non-linear contact loss criteria (Eq. (2)) is applied as well as the non-linear dropper
slackening checking (Eq. (6)), to update the new slackened droppers N t

sd and therefore,
reset the system (45). When two consecutive iterations provide the same results, the
iterative process is finished and the time integration procedure can be moved to the next
time-step.

The most demanding tasks in each time-step of the proposed algorithm, from the compu-
tation cost point of view, are evaluating the force transmitted by all the droppers of the
model according to Eq. (2), since it implies performing the product kdjqt

c for j = 1, ..., Nd,
and particularising on the contact point the response of the catenary to the initial condi-
tions, by the product Υt

cwqt
ini,c.

Despite this issue, it is important to highlight that the system (45) is very reduced in size
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(usually about 2 to 5 equations) and besides, it rarely needs more than three iterations to
be solved. Definitely, these features make this approach a very efficient way to deal with
the non-linearities present in the catenary-pantograph dynamic interaction simulation.
Apart from efficiency, another of the advantages of the method is that no additional
assumptions are made with respect to the direct method explained in Section 2.1. Thus,
the accuracy of the results is not affected.

For the hypothetical use of this algorithm to perform hybrid simulations, in which the
pantograph model is replaced by the real device, some modifications in the formulation are
proposed to adapt the algorithm to this scenario (see Section 3). Another important issue
is regarding the modal basis size. If it is reduced by modal truncation, the computational
cost of the products kdjqt

c and Υt
cwqt

ini,c could be alleviated. A good balance between
speed up of calculations and accuracy of the results is sought in Section 4.

3. Explicit treatment of the interaction force

To obtain the dynamic response of the catenary, Eq. (21) must be solved, in which right
hand side of Eq. (22) is composed of three force contributions, namely:

Ft
IT c = Ft

ini,c(qt−1
c ) + Ft

int,c(qt) + Ft
d,c(qt

c)

In this work, replacing the interaction force, Ft
int,c(qt) (which couples both the catenary

and the pantograph DOF), by its value in the previous time-step Ft
int,c(qt−1), it is pro-

posed. This approach entails incorporating the interaction force explicitly into the time
integration scheme. Thus, the right hand side of Eq. (22) becomes:

Ft
IT c = Ft

ini,c(qt−1
c ) + Ft−1

int,c + Ft
d,c(qt

c) (48)

and the unknown modal coordinates can be split into:

qt
c = qt

ini,c + f t−1
int q̃t

int,c +
Nt

sd∑
j

f t
djq̃dj,c (49)
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where the interaction force f t−1
int is known at the current time-step and q̃t

int,c and q̃dj,c are
obtained by solving problems 1 and 2 of the offline stage.

Regarding the calculations in the online stage, qt
ini,c is computed with the first expression

in Eq. (42). The rest of the unknowns, the slackened droppers correction forces f t
dj for

j = 1, ..., N t
sd, are now obtained by setting and solving iteratively a new version of the

system (45), in which now:

At =



−gt
d11 − ġt

d11 − 1 −gt
d12 − ġt

d12 · · · −gt
d1Nt

sd
− ġt

d,1Nt
sd

−gt
d21 − ġt

d21 −gt
d22 − ġt

d22 − 1 · · · −gt
d2Nt

sd
− ġt

d2Nt
sd... ... . . . ...

−gt
dNt

sd
1 − ġt

dNt
sd

1 −gt
dNt

sd
2 − ġt

dNt
sd

2 · · · −gt
dNt

sd
Nt

sd
− ġt

dNt
sd

Nt
sd
− 1

 (50)

f t
nl =


f t

d1

f t
d2
...

f t
dNt

sd

 bt =



fd1,0 + kd1qt
ini,c + cd1q̇t

ini,c + f t−1
int

(
gt

int,1 + ġt
int,1

)
fd2,0 + kd2qt

ini,c + cd2q̇t
ini,c + f t−1

int

(
gt

int,2 + ġt
int,2

)
...

fdNt
sd

,0 + kdNt
sd

qt
ini,c + cdNt

sd
q̇t

ini,c + f t−1
int

(
gt

int,Nt
sd

+ ġt
int,Nt

sd

)


(51)

Remark. From a practical point of view the matrix At can be considered a diagonal matrix
for nonstitched catenaries because the coefficients gt

djr and ġt
djr are negligible if j 6= r. This

assumption does not degrade the accuracy of the simulations.

After each solution of this system of equations, the slackening criterion (Eq. (6)) is applied
and the system is reset again with the new slackened droppers until two consecutive
iterations provide the same results. At this point, qt

c is computed, and it is necessary to
obtain the vertical displacement of the contact wire on the interaction point as:

ut
cw = Υt

cwqt
c (52)

where Υt
cw has been defined in Eq. (41). With this value, the dynamics of the pantograph

model can be solved and the new f t
int obtained, which will be feed into the catenary model

in the next time-step of the algorithm.

To investigate the effect on the results produced by the explicit treatment of the interaction
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force, a numerical experiment is carried out. The catenary and the pantograph models
used in all the examples of this work are those employed in the benchmark exercise [4].
Although some authors extend their analyses up to 100 Hz [19, 21, 22], it requires to
consider enhanced pantograph models which allow for flexibility modes and, it is out
of the scope of the present work. Thus, the dynamic behaviour of the system is only
analysed up to 20 Hz following the guidelines of the current standards. The simulation is
performed for 10 s, with a time-step ∆t = 0.001 s, a penalty stiffness kh = 50000 N/m [3],
and the pantograph is running at 300 km/h. The 20 Hz filtered interaction force obtained
is shown in Figure 5 with a zoom window comprising the interval from 4 to 6 s.

0 1 2 3 4 5 6 7 8 9 10

100

200

300

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

100

150

200

250

Figure 5: Comparison of the 20 Hz filtered interaction force when treated explicitly (dashed
line) and implicitly (solid line) in the time integration process. Zoom window from 4 to 6 s
(bottom figure).

At first glance good agreement is observed between the results obtained with an implicit
(solid line) and an explicit (dashed line) treatment of the interaction force. Before stabil-
ising, during the first four seconds the interaction force shows a transient regime related
to start-up effects. To quantify the difference between any two discrete signals x1(t) and
x2(t) with Nt points each, the coefficient of variation (CV) of the root mean square error
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Implicit interaction Explicit interaction Relative error
f̄int 159.22 N 159.20 N 0.013 %

σ(fint) 40.33 N 41.23 N 2.23 %
max(fint) 256.76 N 259.62 N 1.11 %
min(fint) 88.58 N 86.39 N 2.47 %

Table 1: Comparison of statistical values of the interaction force interval from 4 to 8 seconds,
resulting from implicit and explicit treatment.

(RMSE) is defined as:

CV = RMSE

x̄1
× 100 =

√√√√∑Nt
t=1 (xt

1 − xt
2)2

Nt

x̄1
× 100 (53)

where x̄1 is the mean value of x1(t).

Applying this measure to the explicit and the implicit integrated interaction forces shown
in Figure 5, a CV of 1.97 % is obtained. This low CV is reaffirmed by the similarity in
the statistical values presented in Table 1. This results confirm the validity of the explicit
treatment of the interaction force to perform pantograph-catenary dynamic interaction
simulations and opens the possibility of using this algorithm in HIL simulations, in which
the value of the contact force at the previous time-step f t−1

int , needed to feed the catenary
model, would be measured in the test rig.

4. Modal basis truncation

Usually, when projecting a set of coordinates to a modal basis, it is possible to truncate
this basis to reduce the dimension of the modal space without affecting substantially the
accuracy of the results. Therefore, the r-th nodal DOF of the catenary can be approxi-
mated by:

ut
c,r ≈ ūt

c,r =
M∑

i=1
Ψr,iq

t
c,i → ut

c ≈ ūt
c = Ψ̄qt

c (54)
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where Ψ̄ is the truncated modal transformation matrix of size N×M , N being the number
of DOF of the catenary model and M the number of selected modes. If M << N , the
proposed algorithm is even more efficient from the computational point of view, because
the computations with vectors and matrices whose size is equal to the number of modal
coordinates, entail less computation effort.

To select a priori the M most relevant modes, it is usual to keep the modes associated
with the lowest natural frequencies and discard those related to higher frequency content.
Following this criterion, the 20 Hz filtered interaction force obtained with different sizes of
the modal basis are compared in Figure 6. Although the catenary model used (see [4]) has
N = 23966 DOF, the use of M = 15000 modes guarantees the accuracy of the interaction
force. This implies keeping modes with natural frequencies up to 342 Hz, as shown in
Table 2.
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Figure 6: 20 Hz filtered interaction force for different levels of modal basis truncation, following
the frequency criterion.

With the aim of reducing the required modes, a different truncation criterion is proposed.
Assuming that the interaction force mainly depends on the vertical movement of the con-
tact cable, a selection of the modes with the most contribution to the vertical displacement
of the cables is sought. To this end, the parameter κz is defined for the mode i as:

κi
z = 1

ωi

ΨT
z,i ·Ψz,i (55)

where ωi is the natural frequency of the mode i, and Ψz,i is a subset of the eigenmode Ψi,
composed of the elements related to the DOF that contribute to the vertical movement
of the catenary cables. After ordering the modes from the highest to the lowest κz, the
20 Hz filtered interaction force obtained when keeping different numbers of modes M ,
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are compared in Figure 7. In this case, a good accuracy remains until the number of
selected modes decreases from M = 10000. However, the maximum frequency content of
the truncated modal basis is about 360 Hz (see Table 2), which is very similar to that
found when the frequency truncation criterion was used.
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Figure 7: 20 Hz filtered interaction force for different levels of modal basis truncation, following
the vertical displacement criterion.

Truncation criterion
Frequency Vertical displacement

M fmax (Hz) CV(RMSE) (%) fmax (Hz) CV(RMSE)
15000 342.8 1.00 723.9 0.004
12500 249.3 7.84 373.1 0.03
10000 172.6 18.22 358.1 0.64
7500 118.1 21.37 257.2 8.60
5000 73.9 21.37 152.3 20.08
2500 36.1 28.07 66.12 21.85

Table 2: Maximum natural frequency and coefficient of variation of the RMSE for both the
frequency and the vertical displacement-based truncation criteria.

To quantify the truncation error, the values of the CV of the RMSE between the refer-
ence and the truncated solutions, listed on Table 2, are plotted in Figure 8 for the two
truncation criteria considered. It is clearly noticed that the vertical displacement modal
truncation is more effective than the truncation based on the frequency content since
the modes associated with the lateral and longitudinal displacements do not contribute
significantly to the dynamic response of the catenary.
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Figure 8: CV(RMSE) as a function of the truncated modal basis size for both the frequency
and the vertical displacement truncation criteria.

Even so, in the best scenario to provide accurate results (vertical displacement truncation
with M = 10000), the number of required modes seems to be excessive if comparing the
frequency content of the analysed results (up to 20 Hz) with the natural frequency of the
influential modes (up to 360 Hz). This issue has been noticed only if the non-linearity
of dropper slackening is considered and it is caused by the inability of the chosen modal
basis to represent the low frequency response of the catenary without including modes
with high frequency content.

To point out this feature, the results shown in Figure 7 are recomputed with a catenary
model whose droppers behave linearly, i.e. they do not slacken under compression. If
the modal basis is truncated according to the κz value of each mode, the 20 Hz filtered
interaction forces obtained with different truncation levels are plotted in Figure 9. The
good accuracy of the results can be appreciated if dropper slackening is not considered,
even with a modal basis composed of only M = 2000 modes and a maximum frequency
content around 50.5 Hz.

To strengthen this conclusion, the CV of the RMSE between the reference and the trun-
cated solutions is compared in Figure 10. It is remarkable to see the great reduction in
the number of modes necessary to obtain an accurate solution when the problem turned
linear. Specifically, M = 5000 modes (150 Hz) are enough to obtain an interaction force
with similar accuracy to that obtained with M = 10000 modes (358.1 Hz) when dropper
slackening is considered.
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Figure 9: 20 Hz filtered interaction force for different levels of modal basis truncation, when
linear dropper behaviour is assumed.
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Figure 10: Evolution of the CV(RMSE) with the truncated modal basis size when non-linear
and linear droppers are considered in the catenary model.

A way to check if the poor performance of the modal basis used when a dropper is
slackened, consists of projecting the modes of a catenary with one dropper missing to the
reference modal basis. To this end, a single span catenary model is used without loss of
generality. When the pantograph pushes up, for example, the fourth dropper, it slackens
and the catenary behaves as if this dropper were missing. Thus, the modes of the catenary
model without the fourth dropper, Πn for n = 1, ..., N ′, can be calculated and projected
to the modal basis Ψ by solving the following system of equations:

Ψηn = Πn (56)

where ηn is the vector of weights to express the vector Πn as a linear combination of the
vectors Ψn.
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Figure 11: Graphical representation of the 14th (a), and the 53rd (b) modes for a catenary
with the fourth dropper missing.

In Figure 11a, the mode Π14 with a natural frequency of 5.3 Hz, is depicted while the
mode Π53, with a natural frequency of 16.1 Hz, is plotted in Figure 11b. The absolute
value of the weights ηn obtained after solving Eq. (56) for n = 14 and n = 53, are shown
in Figure 12. This last graph shows the need to consider high frequency modes (up to
300 Hz) of the full catenary model to represent low frequency modes (5.3 and 16.1 Hz) of
the same catenary with the lack of one dropper, i.e. with a slackened dropper.
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Figure 12: Absolute value of the projection weights η14 (solid line) and η53 (dashed line).

5. Study of the real-time capabilities

In this section, the computational time required to perform numerical simulations is anal-
ysed. The algorithm is coded in MATLABr and carried out in an Intelr Xeonr ES-1660
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v3 CPU.

The first analysis is focused on unveiling the relationship between the number of modes
considered in the modal basis M , and the computational cost of the simulations tcomp

considering the online stage, in which the time integration takes place. To this end, simu-
lations for 11 s of a twenty-span catenary model interacting with a pantograph travelling
at 300 km/h are performed.
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Figure 13: Computational time versus the number of modes M of the truncated modal basis
when the time integration is carried out with 1 ms (circles) and 2 ms (triangles) time-step.

The evolution of the consumed computational time with the size of the modal basis is
shown in Figure 13. The study is made for two different time steps, namely ∆t = 0.001 s
and ∆t = 0.002 s. The computational effort necessary in both scenarios increases almost
linearly with the number of considered modes M . By using ∆t = 0.001 s, simulations
that consider approximately more than 11000 modes exceed the real-time limit (11 s).
However, as demonstrated in Section 4, M = 10000 modes suffice to obtain accurate
results while keeping real-time performance. If one uses a higher time-step, ∆t = 0.002 s,
the results obtained also have the desired accuracy as shown in [16] and the real-time
limit is not overcome no matter the number of truncated modes. These features enable
the use of the proposed algorithm in an HIL set-up, in which the catenary is replaced by
a virtual model.

The second study is aimed at comparing the efficiency of the proposed method, which
considers a modal approach, with the offline/online strategy published in [16]. Four
catenary models, with 5, 10, 15 and 20 spans have been used to perform simulations of 2,
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5, 8 and 11 s respectively.

5 spans 10 spans 15 spans 20 spans
Simulated time (s) 2 5 8 11

Online stage in [16] (s) 1.08 5.43 13.70 24.59

Proposed algorithm (s) 0.21 1.06 2.45 5.67

M 2500 5000 7500 10000
CV(RMSE) (%) 1.26 1.10 0.92 0.90

Speed-up 5.14 5.12 5.59 4.34

Table 3: Computational time comparison between the proposed real-time algorithm and the
online stage of the method presented in [16].

The computational time required to perform such simulations is shown in Table 3. It is
important to remark that the size of the modal basis M used for each catenary model
has been tuned for the CV(RMSE) of the 20 Hz filtered interaction force to be around
1%. The main conclusion drawn from this study of the computational time is the notable
speed-up factor (∼ 5) achieved with the modal approach combined with the offline/online
integration strategy. Thus, the presented method provides the necessary features to per-
form HIL simulations in contrast to those provided by the initial offline/online strategy
presented in [16].

6. Conclusions

In this work, a strategy to simulate the pantograph-catenary dynamic interaction in real-
time has been proposed. The method allows performing HIL simulations in which the
catenary is replaced by a numerical model. Based on the efficient approach presented
in [16], the projection of the catenary coordinates to a modal basis is proposed. This
leads to a diagonal matrix in each step of the time integration method, which allows to
speed up the calculations notably.

The integration strategy has been adapted to deal with the interaction force in an explicit
way, by decoupling the pantograph and catenary models. This could be used in a real
HIL test in which the contact comes from the measure provided by the sensors located
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between the linear actuator and the pantograph contact strips. The results corroborate
that this decoupling can be made without introducing significant differences in the simu-
lation results with respect to those obtained for the coupled system, which is fully treated
implicitly.

With the aim of keeping the computational cost as low as possible, the truncation of the
modal basis has been studied. It has been shown that the best criterion to carry out the
modal basis truncation is that based on the vertical displacement contribution of each
mode. However, the number of required modes to keep a good accuracy of the results
seemed too high for the frequency range of interest. According to our simulations, it has
been concluded that this phenomenon occurs due to the poor ability of the modal basis
to represent configurations with slackened droppers.

Regarding the computational cost, simulations with both the coupled implicit and the
uncoupled explicit strategies require a very similar computational time. However, when
compared with the offline/online strategy proposed in [16], a speed-up factor around 5 is
accomplished with the use of modal coordinates.
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