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Abstract

Catenaries are large cable structures which transmit electric current to trains
through sliding contact with a pantograph. The Finite Element Method (FEM)
is widely used to model this dynamic interaction problem and obtain the contact
force between the pantograph and the catenary. As an alternative, analytical
models can also be used to study catenary dynamics, although they require
certain simplifications of the features considered in numerical models. In this
paper, an analytical model composed of an infinite string and a visco-elastic
support is introduced and enhanced by considering a Kelvin-Voigt damping
model and the initial height of the contact wire. Considering the Finite Ele-
ment (FE) model as a reference, the analytical model parameters are properly
adjusted through static and wave propagation analyses to achieve similar be-
haviour in both the analytical and the FE models. To check the performance
of the proposed model, the steady-state response of the pantograph-catenary
coupled system is calculated and compared with the results of the FE model.
Finally, the analytical model is used to analyse the interference phenomenon

produced during two-pantograph operation.
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1. Introduction

Overhead contact lines, commonly known as railway catenaries, are cur-
rently the most widely used systems to supply high-speed trains with power
through sliding contact with a moving pantograph. The dynamic behaviour of
the pantograph-catenary interaction is of great interest in the system design as
it can affect the reliability of vehicle operation. For this reason, many catenary
models have been developed [1] and used to analyse the influence of design pa-
rameters in the current collection quality. These simulations are regulated and
must be validated according to specific standards (EN50318 |2]).

Finite Element (FE) models are the most frequently used technique to sim-
ulate the problem, as shown in the recent benchmark exercise [3]. For example,
in previous studies [4, |, 6], FE-based models have been used to analyse the
influence of certain design parameters in the current collection quality, which
is usually quantified by the standard deviation of the interaction contact force
(CF). These studies concluded that higher CF variation is obtained when the
operational velocity is close to the contact wire wave velocity, when there is
higher stiffness variation along the span or when the pantograph collector head
has greater mass.

As an alternative to FE models, analytical catenary models are also found
to be a useful tool in providing a better understanding of the role played by the
design variables in exchange for adopting certain simplifications. For example,
in [7], the catenary is modelled as a single and two-degrees-of-freedom system
with periodically time-varying mass and stiffness and the relations between the
system parameters and the upper limit of the train speed are stated. In [8] an
analytical model was used to analyse the interference between pantographs when
two pantographs run simultaneously in a vehicle. An optimum distance between

the pantographs is theoretically calculated, based on the phase opposition of the



30

35

40

45

50

55

vertical displacement of the contact wire produced by the trailing pantograph
and the displacement induced by the leading pantograph.

An infinite string with visco-elastic support is used in [9] to obtain the sta-
tionary response of lumped-parameters moving models coupled to the string.
More complex infinite string models include periodic discrete elements, such as
in |10] or in [11], in which a two-level infinite catenary model, composed of an
upper and lower string (governed by the one-dimensional wave equation) joined
by periodic supports and dampers, is simulated with a pantograph modelled by
a harmonic point-load. Other similar models can be also found in the literature,
such as that in [12] which is composed of several finite strings and is used to
study the wave propagation and reflection phenomena in the catenary.

The objective of this paper is to propose a new analytical pantograph-
catenary coupled model to obtain in a closed-form expression the pantograph
interaction contact force. The proposed model is based on a previous model
presented in [9]. In this work, the governing equation is modified to include
a Kelvin-Voigt damping model in order to get a dissipative behaviour similar
than that incorporated into the FE model. This modification implies to raise
the order of the equation and the new solution is presented throughout the pa-
per. Furthermore, the geometry of the contact wire under gravity is considered
in the proposed model. The initial contact wire height profile is one of the main
causes of CF variation as some studies shown |13]. Also, in [14, [15], the authors
conclude that the geometric irregularities of the contact wire have a stronger
influence on CF than other sources of irregularity, especially at high operating
velocities as shown in [16]. This influence is also studied in |17, 18], which con-
clude that the optimal initial geometry significantly reduces CF variation. The
analytical string models of the catenary found in the literature do not include
the initial contact wire height profile and therefore, its important effect is not
reflected in their results.

The interaction contact force obtained with the analytical model is compared
with a verified FE model solution |19, 20]. With the aim to obtain a response

as similar as possible to that of FE models, the stiffness and mass parameters of
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the analytical model are properly tuned by following a proposed methodology
based on static and wave propagation considerations. Finally, as an example of
application of the proposed model, a new approach is raised for understanding
the multiple pantograph interference, by proposing a simplified analytical ex-
pression to evaluate the optimal distances between pantographs. This problem
was also studied in [21], which obtained smaller CF variation in the trailing
pantograph by using an auxiliary pantograph, or in [16], which showed reduced
performance when the elapsed time between the pantographs passage matches
the natural catenary frequencies.

The contents of this paper are organised as follows. After this introduc-
tion, the formulation of the reference FE model is described in Section 2l The
proposed analytical model is developed in Section Bl and a procedure to obtain
the required parameter’s values is presented in Section [l The results obtained
by the proposed model and their validation are given in Section Bl before the

concluding remarks in Section [Gl

2. Reference models

The Finite Element Method (FEM) is the technique most frequently used to
model railway catenaries [3]. These structures are composed of different wires
and bars as can be seen in Fig.[[l In this paper, the catenary FE model [19, 20]
validated according to EN 50318 [2] is taken as the reference for the analytical
model. The material properties and the geometric parameters of the model used
are defined in the annex.

The pantograph is an articulated device on the locomotive roof that keeps
in contact with the catenary. Although there are different options for modelling
pantographs, in this work a lumped parameter model is used for its wide use
and simplicity. The model consists of three masses that move vertically, which
are connected by springs and dampers as shown in Fig. [ (a). The pantograph
lifting mechanism is replaced by a force applied on the bottom mass. For the

pantograph-catenary interaction, the penalty method is used, which considers a
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Figure 1: FE model of the catenary.

high stiffness element (k;, = 50,000 N/m B]) placed between the contact wire
and the upper mass of the pantograph as depicted in Fig. 2l (b) and exerting a

w contact force f. between both models as view in Fig. I (c).
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Figure 2: (a) Pantograph model, (b) penalty model and (c) contact force fo > 0.

To obtain the initial geometry of the catenary model, the static equilibrium
equation and certain design constraint equations must be solved simultaneously.
The reader is referred to [19], where this problem is described in detail. Once the

s initial configuration of the catenary has been solved, the pantograph-catenary
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dynamic interaction problem is solved by following the procedure described in
[20]. This problem can be stated assuming small displacements with respect
to the static equilibrium position, which means it is governed by the linear
equation:

Mii + Ca+ Ku =F (1)

where u, 1 and U are the nodal displacements, velocities and accelerations
respectively. K and M are the stiffness and mass matrices and a Rayleigh
damping model is used to define the damping matrix C = aM + K with
a = 0.0125 s7! and B = 10* s [3]. F is the vector of external forces applied
to the pantograph. Despite the linear appearance, this is in fact a non-linear
problem, since dropper slackening and contact loss are considered in the model.
The Newmark or HHT [22] schemes can be used for the numeric integration
of Eq. (Il) combined with an iterative method to deal with the aforementioned

non-linearities.

3. Analytical model of the catenary

Here we propose an analytical catenary model based on the infinity string
proposed in [9]. The model is enhanced with the introduction of a Kelvin-Voigt
damping model and the consideration of the initial geometry of the contact wire.
The final model proposed is used to obtain the CF produced in the pantograph-

catenary dynamic interaction problem.

3.1.  Initial model

For the sake of clarity, we here summarise the model presented in 9] com-
posed of an axially loaded infinite string prestressed with a force T' and sup-
ported by a continuous visco-elastic layer, as shown in Fig.[B with & and ¢ being
the stiffness and damping coefficients per unit of length, respectively. The linear

density p can also include the influence of the mass of the support.
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Figure 3: Initial analytical string model (ASM1) with visco-elastic support under a

harmonic moving load.

The initial analytical string model (ASM1) subjected to a distributed load

p(x,t) is governed by the equation:

0w Pw  _ow -
MW— W‘i‘Cﬁﬁ‘kW—p(l',t) (2)

where w = w(x, t) is the vertical displacement of the contact wire.

The steady solution of Eq. (2) when the contact wire is loaded by a concen-
trated harmonic moving force F(t) = Fye'** (see Fig. B]) with frequency €2, and
velocity v, is given in H] In this case, the right-hand side term can be expressed

as:

p(x,t) = Foe™™™ §(z — vt) (3)

where ¢ is the Dirac function. The solution of this problem is different for
v greater or smaller than the critical velocity v. = \/m However, as the
standard EN50318 B] limits the train velocity to v < 0.7v., the solution used
in this work is that in which v < v, or equivalently A > 0, with A = T — pv?.

In this case, the expression for the string vertical displacement is:

iF —i[k:?(w—vt)—ﬂt]
o if z—vt>0

- A (RS — k) "
w(x,t) =
,L-Foe—i[kg(z—vt)—ﬁt]
if z—vt<0
A (kY — kD)



135 where k{* and k§} are the poles of the system:

2\ 2\
B 2uv) — ps cv — s
2 2\ 2\

being:
1 3
Ds = [2 (\/A2 + B2+ A)}

1

qs = B (VA2 + B2 — A)}
A =ATu0? — 0% — 4Nk

B =4TQc

The first expression in Eq. (@) applies to the points behind the excitation point

x — vt > 0, while the second part is defined for the points ahead the excitation

point z — vt < 0.

w  3.2. Simplifying assumptions in the analytical model

Important simplifications are adopted in ASM1 if compared to the more

complex FE models. This simplifications also applies to the later presented

ASM2.

e Continuous support. In the FE model, the catenary can be divided

145 into two parts, namely, the contact wire and the set composed of drop-

pers, steady arms and the messenger wire. In the analytical model these

two parts can also be identified, but the latter is simplified by a contin-

uous visco-elastic support which does not strictly describe the complex

dynamics of the droppers and the messenger wire.

150 e Constant stiffness. Another feature accounted for in the FE model is the

uneven stiffness and mass distribution of the support which holds the con-

tact wire by discrete points (dropper connections), leading to additional

irregularities and wave reflection.
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e No propagation at the support. Furthermore, in the FE model any
two different points of the support are coupled, which allows the perturba-
tions to propagate in the support, while in the analytical model the wave

propagation only occurs in the contact wire.

e No moment of inertia. Another simplification of the ASM1 is neglecting

the bending stiffness of the contact wire.

e Straight string. Small displacements are considered in the initial con-
figuration of the contact wire, thus allowing the use of a straight string

dynamic equation.

e Steady state. As the catenary is assumed to be a long enough periodic

structure, only the steady-state response is considered by ASMI1.

Despite these simplifications, the analytical model includes the basic fea-
tures of the catenary and leads to analytical expressions which provide explicit

information on how the design parameters influence the solution.

3.83.  Consideration of a Kelvin-Voigt damping model
In the catenary FE model, a proportional Rayleigh damping model is used
in which the damping matrix is a linear combination of the mass and stiffness
matrices (C = aM+K). In this section, an extension of the previous analytical
model is proposed with a damping model similar to that of the FE model.
Following the procedure presented in [23], a Kelvin-Voigt damping model is
included in the differential equation Eq. (2)) by writing the damping coefficients
as a linear combination of the inertial and elastic terms:
u% — T% + (op + Bk) E;—I: - T% (g?g) kw = p(z,t)  (7)
Note that in ASM1 the term T9?w/dx? is lacking its corresponding proportional
damping term in the differential equation, which means the damping model in
ASM1 is not comparable to the one in the FEM model.
This proposed analytical string model (hereinafter called ASM2) has an ad-

ditional term and has become a third order equation. In the case of a moving



external force of frequency 2, the improper integral used to compute w(z, t) has
a third order polynomial denominator instead of the second order polynomial
in the ASM1 [9]:

1 I —i(k(z—vt)—Qt)

— 0°¢ dk
2 J_ oo MRS + k2 + Tk + 0o

w(z,t) =

(8)
where:

A=1i8Tv

n="T— > +ifTQ

T =i (op+ Bk) v — 200

o=k+i(ap+ Bk)Q— pQ?

s In this case the system has three poles k{!, k§! and k? whose analytical expres-

sions are:
Q n \S/EQ S
k= -t - +—
33X 3\S 392
o (L1 VBN VRQ (1 V3 S (10)
3\ 2 2 318 2 2 /) 32\
]{;Q__i_ _1_@ \3/§Q+ _14_@ S
373 2 2 ] 3\S 2 2 ) 332\
where:
S = \/R+/4Q3 + R2
Q =3\ —n? (11)

R= =21 + 9\t — 27\

Applying the residue theorem to Eq. (), the string vertical displacement is:

efi(kg(vat)fﬂt)
. e ‘e _ <
ZFOZP: /\Tl;lp (k:;}—k?) ; z—vt <0
w(z,t) = . =ik (@—vt)—0t) (12)
_ZF();W, r—vt>0

where klgf are the poles with a positive imaginary part and kf; are the poles with

w0 a negative imaginary part. As in the ASM1, the solution is divided into two

10
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expressions which correspond to the displacements of the string section behind
and ahead of the load application point, respectively. Each part of the solution
consists of a sum of exponential terms which represent damped waves. In ASM2
there are three terms (or waves) included in the solution corresponding to the
three poles. The poles with a positive imaginary part are contained in the first
part of the solution, where x — vt < 0, while the poles with a negative imaginary
part are used in the expression valid for x — vt > 0.

In the simpler ASM1 model, the sign of the imaginary part of the two poles
depends on the velocity v. If v < v,, there is one pole with a negative imagi-
nary part and one pole with a positive imaginary part, which corresponds to a
backward and a forward wave, respectively. On the other hand, if v > v., both
poles have positive imaginary parts and the two waves propagate backwards,
the section ahead of the applied force remaining unaltered. In the ASM2 it is
difficult to find a mathematical criterion to define the sign of the imaginary part
of the poles. However, numerical tests reveal that the imaginary parts of the
poles do not vary their signs in the range of interest of €2 and v, if the values
of the parameters T, k and p are those obtained in Section @l Specifically, only
one pole k! has a negative imaginary part, while the other two poles k¥ and
k$! remain with a positive imaginary part.

To highlight this feature, in Fig. M the imaginary part of the poles of ASM2
is plotted versus the velocity v for the excitation frequency 2 = 10 Hz. It is
important to note that this behaviour is analogous for all the frequencies studied
and although the imaginary part of the poles is very close to zero for some values
of v, it does not actually reach that value in any case. In ASM2 there is no
critical speed at which the signs of the poles change, however, the solution is
similar to that of ASM1. For speeds below v. of ASM1 (~146 m/s with the
parameter used in this paper) the imaginary part of kS is very large and its
associated wave is strongly damped. Thus, the only noticeable waves are those
related to the poles k$* and k2, as in ASM1. The same explanation is applicable
for speeds greater than v., in which the absolute value of the imaginary part of

k$! is large enough and for that reason has a negligible influence. In this case, kS,

11
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kS are the dominant poles and there are two noticeable backward waves, as in
ASMI1. Despite these similarities, the damping is different in the two analytical
models and the influence of the additional pole in ASM2 is considerable for

velocities close to v, and also for points close to the load point.

6 T T T T T
41 ki} ]
[ e S k3
E 2 \ 3
=,
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-6 " " " " "
0 50 100 150 200 250 300
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Figure 4: Imaginary part of the poles of the ASM2 respect to v for Q =10 Hz.

3.4. Model with contact wire initial geometry and pantograph coupling

The force of gravity produces an uneven initial height of the contact wire,
which is properly considered in the FE model. In this section, a realistic contact
wire initial height profile is included in ASM2. For this, the total string height

can be written as:

z2(x,t) = zo(x) + w(z,t) (13)

where zg(z) is the initial height, which depends on the position z and, w(x,t)
satisfies Eq. () thanks to the linearity of the problem.

As catenaries can generally be assumed as periodic structures composed of
a succession of equal spans, the height of the contact wire is a periodic function
that can be broken down into a sum of harmonic functions by means of the
Fourier transform. Due to the linearity of the system, the problem can be
solved first by considering a harmonic height zo(z), after which the superposition
principle can be applied to get the solution with a general contact wire height

in a further step.

12
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The objective is to solve the dynamic interaction of two pantographs cou-
pled to ASM2, which now incorporates an initial harmonic height zg(x). The
pantographs move at the same speed v and are separated by a distance L, as

seen in Fig.

Figure 5: Two pantographs coupled to the ASM2 with initial height zo(x).

The methodology followed in [9] consists of using the dynamic stiffness ma-
trices to solve the coupled interaction between the string and the pantograph
models. In this paper the same methodology is considered to solve the prob-
lem, but nevertheless, the receptance functions are used and only one degree of
freedom is included per pantograph, which corresponds to the vertical displace-
ment of the point in contact with the string. The problem is thus reduced in
size without affecting the accuracy of the results. Furthermore, in the case of
two pantographs, this simplification can obtain an analytical expression of the
solution.

In order to apply the described procedure, it is first necessary to obtain the
Frequency Response Function (FRF). Given two points 1 and 2 on the string,
located at a distance L and both moving at the same speed v (see Fig. [6]), the
FRF of the string Hi, is defined as the ratio between the vertical displacement
of 1 and the harmonic force applied at 2:

w(vt + L, t)

Hy5(2) = Foeiot

(14)

Replacing the expression [l in Eq. (I4)) and considering the signs of the imag-

13
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inary parts of the poles discussed previously (Sec. B3), the FRF is:

Hip(9) = e 15
2O = Sy () 1

Similarly, Ho; can be defined as the ratio between the displacement produced

in 2 and the excitation applied at 1:
ietkS L ietkS L
Hxn (Q) = Q Q\ (1.0 oy T Q Q\ (1.0 Q
)\(kz—kl)(kQ—kg) )\(k3—k1)(k3—k2)
When the displacement is measured at the force application point, the direct

FRF is:

(16)

Hi1(2) = H2(Q2) = A (K — kgl_)z(k:¥ — k) "

It is also necessary to calculate the FRF of the pantograph model, which includes

a penalty stiffness kj, on the upper mass (see Fig. ). The pantograph FRF is
thus defined as the ratio between the displacement of the upper point (1’ or 2’
in Fig. @) and the harmonic force applied at the same point:

-1

1
+ [_Q2MP +1QC, + Kp] (1,1)

~kn

where M, C, y K, are the mass, damping and stiffness matrices of the pan-

Hp () (18)

tograph respectively, and the operator | ](1’1) extracts the first row and first
column element of the matrix which refers to the upper mass degree of freedom.
The contact forces F; and F5 between each pantograph and the string, rep-
resented in Fig. [6] are the unknowns of the problem. The linearity of Eq. (1)
allows writing the vertical displacement of the points 1 and 2 as the superposi-
tion of the displacement produced by each force acting separately. The height of
points 1 and 2 are thus the sum of the initial height of the contact wire and the
displacement produced by the contact forces according to the scheme in Fig.
This is:
z1(t) = zo1(t) + H11 (Q)F1(t) + H12(Q) Fa(t)
2(t) = 202(t) + H21(Q) F1(t) + H22(Q2) F2(t)
where 201 (t) = zo(vt + L) and 2p2(t) = 20(vt). In turn, the height of the points

(19)

1’ y 2’ which belong to the pantograph model are:
21(t) = —Hp(Q) Fi(t)

(20)
2y (t) = —Hp(Q) F>(t)

14
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Figure 6: Contact forces in the coupled string model with two pantographs.

Since the initial height is considered a harmonic function of frequency £2, it

is possible to write them as:

onlt) = zme@ (21)
Z202 (t) = 202€ZQt

in which, there is a phase shift between the phasors Zp; and Zpo
Zo1 = Foae' v (22)

due to the distance between the points. This phasor notation can also be used

for the CFs:
Fi(t) = Fy e
0 =he 3
Fg(t) = FQ@ZQt
Since the points 1 and 2 match with the points 1’ and 2/, the left hand side

terms of Eqgs. (I9) and (20) can be equated to obtain the following system of

equations:
—H,(2) — H11(2) —Hy5(82) £y I (24)
—Hoy1(Q) —H,(Q) — Ha2(Q) P Z02
which can be arranged in matrix notation:
H(Q) F =7 (25)

As stated above, in the static equilibrium configuration, the catenary contact

wire adopts a periodic height zo(2) whose period is equal to the span length L.

15
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The periodic function zo(z) can be represented by the Fourier series:
e .
20(x) = Zo + Z Z,, ekn® (26)
n=1

where Zj is the mean value of the function, Z,, are the complex Fourier coeffi-

cients and the wavenumber is:

kn, = for neN (27)

By solving Eq. B3l the contact force of two pantographs coupled to ASM2
are obtained for the case of an initial harmonic height. Since that system is
linear, the more general case in which zo(z) is a periodic function can also be

solved by applying Eq. (26) and the superposition principle:
F(t)=Fn + > H Q) 7, ¢ (28)
n=1

where F,,, is the vector with the mean CF of every pantograph, the excitation
frequency is:

Q, = kv (29)

and Zg,, groups the complex Fourier coefficients of the contact wire initial height,
which considers the phase shift between the pantographs:

7 i2nL

n€ v

Zo,n = (30)
Zn

4. Parameter setting

This section is devoted to determining the ASM2 parameters required to
achieve similar behaviour to the reference FE model. These include: string
tension 7', support stiffness k and linear density x. The o and B damping
parameters are the same as those considered in the FE model. The tension T
can be taken directly from the FE model. This is given by the value of the axial
pretension of the contact wire, which is 31500 N in this study.

16
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4.1.  Setting visco-elastic support stiffness

The value of k is tuned by comparing the static equilibrium response in both
the ASM2 and FE models. Given a vertical force applied at a certain point
on the contact wire, the vertical stiffness k, is defined as the ratio between
the applied force and the vertical displacement at the application point. This
parameter is constant at any point in ASM2. However, as the FE model is
not homogeneous and k, varies according to the position in the span, as shown
in Fig. [7 its mean value k, ppv = 2538.7 N/m is adopted as a representative

value.

2800
2600
2400
2200

k. [N/m]

Figure 7: Vertical stiffness k. of the contact wire of the FE model in a span.

Vertical stiffness k, can be calculated in ASM2 by using the direct FRF
defined in Eq. (I7), assuming v = 0 and Q = 0:

k,=H;'

a=0 =2Vk T (31)
v=0

Thus, if k. is enforced to match k. prm:

2
kz,FEM

];:
4T

(32)

which leads to a visco-elastic support stiffness k = 51.15 N /m?2.
In order to check the static solution with the adjusted k, the FE model and
ASM2 are compared in Fig.[8 in which the vertical displacement of the contact

wire is adimensionalised with respect to its value at the load application point.

17
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Two curves are shown for the FE model, in which the load is applied in the
middle of the span and in the steady arm. There is clearly good agreement
between the response of both models, especially when the force is applied on

the steady arm.

—— ASM2
0.8f — — — FEM middle 1

0 50 100 150
x [m]

Figure 8: Adimensionalised displacement of the contact wire in FE model and ASM2

produced by a static force.

4.2.  Setting string linear density

To obtain string linear density wu, is not enough to consider only the mass
of the catenary contact wire, the mass of the other parts of the catenary must
also be taken into account. A wave propagation analysis is performed to adjust
the value of u, so that similar behaviour is found in ASM2 and the FE model.
For this, the response of the contact wire is calculated in both models for a
harmonic force with v = 0.

In this scenario, as the load has no forward velocity there are only two poles,

k$! and kS, in ASM2 and the displacement of the contact wire (backward side)

is given by:
je—i(ksz—0t)
w(z,t) = —F———= (33)
n (kS — k7)
where n =T 4 ¢3T€) and the poles are:
kQ _ Ds _ ds
LT BPT? VT + P72
(34)
Q —Ds ds

5 =

/T + 527032

18

VT + B2TQ?
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in which, ¢; and ps are those defined in Eq. (), but now the coefficients A and

B are:
A=—k—p(ap+ Bk) Q0 + uQ?
(35)
B = (ap+ k) Q — BkQ + BuQ®
Eq. (B3) represents a damped wave whose wavelength is:
2
Ao =——o (36)
kar

kgR being the real part of k$. This wavelength \q is very sensitive to u, as can
be seen in Fig. @ in which A\ is plotted for different values of the excitation

frequency and p. Aq is therefore a suitable magnitude to adjust linear density pu.

30

E 90
G
,<

10

0

10 20 30 40
Q) [Hz|

Figure 9: Wavelength \q of ASM2 with v = 0.

The same problem is solved for the FE model. Assuming linear behaviour
of the FE catenary model (see Eq. (), the steady response when it is loaded
by a harmonic external force with frequency 2 is:

u(t) = [(-*M+iQC +K) ' Fe] (37)

where F is a vertical unit force applied to the contact wire at the middle of the
span. The particular solution u(t) of Eq. (37) leads to a contact wire vertical
displacement function wgg,, (x,t). If the FE model response is similar to that

of ASM2, a wave with wavelength Aq.., could be identified in the function
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Wegy (€, 1), for which this function is evaluated at discrete points at a certain

time (for example ¢t = 0):

Ax being the distance between two consecutive discrete points x,,.

The presence of a single harmonic wave in w(n) cannot be guaranteed due
to the complexity of the FE model, it is therefore necessary to obtain the most
representative wavelength in the FE model response for every excitation fre-
quency ). For this, the Fourier transform of w(n) is first obtained and then
the spatial frequency k = 27/X of the Fourier term with the highest weight is
found. To avoid the leakage error, the Fourier transform of w(n) is carried out
by a variable window whose size, N, depends on the spatial frequency. Thus,
for a given k, the N used to calculate every Fourier term is forced to include
M complete cycles of this spatial frequency, so that the relation between the
window size and the wavelength is:

_

N(X) s

eN (39)

In this paper, the value M = 7 is adopted because it provides a good balance
between precision and window size. For every excitation frequency (2, the terms

of the single-sided Discrete Fourier Transform (DFT) of w(n) are obtained with:

2

2 ) —2milM (1)
W)\()\) = W w(n) e NV
1

Finally, the value of A which produces the maximum W) is taken as the most

(40)

3
I

representative wavelength g, for frequency Q. To illustrate this method
Wi (A) for © = 10 Hz is represented in Fig. [0 in which the maximum value is
found for Aqup,, = 14.52 m.
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Figure 10: DFT of w(n) with variable window size with respect to the corresponding

wavelength \ for Q =10 Hz.

375 The values of A\q,p,, are obtained for excitation frequencies ranging from 10
to 40 Hz. Lower frequencies lead to very a large wavelength and the upper limit
is high enough, considering the low-pass cutoff frequency of 20 Hz defined in the
standard [24] for the CF. Finally, the parameter u is obtained by a least squares
fitting of A\ (Eq. (B8])) to the results of the FE model \q,..,, = arg max Wy ().

s0 This fitting gives a value of © = 1.4735 kg/m. The good agreement between the
FE model ant the fitted ASM2 wavelengths can be seen in Fig. [[1l

150 ——— ASM2
- - —FEM

0 I I I I I
10 15 20 25 30 35 40
Q [Hz]

Figure 11: Wavelength \q produced by a harmonic force in both ASM2 and the FE

model.

Two additional ranges of 2 are considered to ensure that the value of p
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obtained does not depend on the choice of this range. The u obtained after
the fitting are compared in Table [I for the three ranges of 2. Given the small

difference between the obtained values, the fitting can be considered valid.

Table 1: Fitted values of p for different ranges of .

Q [Hz] ‘5-20 10-20  10-40

1t [kg/m] \ 14652 1.4790 1.4735

5. Numerical results

In this section, ASM2 and the FE model are used to obtain and compare the
contact force (CF) and its standard deviation (o) of the pantograph-catenary
dynamic interaction in different examples, considering one pantograph (single
operation) and two pantographs (double operation).

The mean value of the CF, F,,, is controlled by the external force applied
to the pantograph mechanism. According to the standard [24], this magnitude

must fulfil the following limitation:
F,, <0.0097v* + 70 (41)

where v is the velocity of the pantograph expressed in km/h. In the ASM2 the
CF is obtained as a sum of independent harmonic terms, so the mean value of
the CF (F,,,) does not influence either the harmonics F(£2,,) or o. On the other
hand, in the FE model a higher value of F;,, leads to a higher CF variation due
to the uneven distribution of mass and stiffness along the contact wire. In the
simulations carried out in the following examples, the maximum value of F},
according to Eq. (A1) is used, since this is the case with the most CF variation.

The CF is filtered by a 20 Hz low-pass filter, following the guidelines in [24].

5.1.  Initial geometry of the catenary

The FE model of the catenary used in this paper is composed of periodic 65

m long spans with 7 droppers. The FEM static solution is used to determine the
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ws  height of the contact wire under the force of gravity (shown in Fig. [[2]), which is

used to calculate the CF in the analytical model. Fig. I3 represents the spatial

frequency content of the contact wire height, which allows us to express zp(x)

as a sum of harmonic functions. The 7" and 8" harmonics depicted in Fig.

are the most important and are directly related to the dropper-pass frequency.

5.302

5.300

o 95.296 1
N

5.294 ]
5.292

0 10 20 30 40 50 60
z [m]

Figure 12: Catenary contact wire height profile along a span.

|Zn| [mm]

O'j ?TTTAI @‘P?‘P‘Fm%mm@@oo,\;

0 0. 1 15 2 2.5
kn [m_l]

Figure 13: Discrete Fourier Transform of the catenary contact wire height.

a 5.2.  Single operation

In this case, Eq. (24]) can be particularised for only a single pantograph,

assuming Fy = 0:

— [H,(Q) + Hy1(Q)] F, = Z,,

whose solution is:

the dynamic stiffness being:

AR — B (BT — k)

Kp(Q) =
PO = TG - )G - D)

23
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a5 where Z,, are the Fourier terms of the initial contact wire height represented in
Fig.

The frequency content of the CF |Fn(Q)| obtained by ASM2 is compared in

Fig. 4] with that computed by the FE model for excitation frequencies ranging

from 0 to 20 Hz and the pantograph running at 200, 250, 300 and 350 km/h.

20 Note that the number of harmonics included in the considered frequency range

is lower for high speeds due to the relation given in Eq. ([29). There is a rea-

sonable similarity between the results of both models since the magnitude of

the analytical results is not too far from the FE results. However, great dis-

crepancies are found at 350 km/h in the first two harmonics. They are caused

w25 probably by the high F,, imposed according to Eq. (IJ), since the higher the

F,,, the higher the influence of the stiffness variation in the FE model, which is

dominated by the first harmonics.

10 15
z Z. 10
z° Z slx 1
. ﬁ?TT*%%LTﬁ T%ﬁ% oLad ITaR ‘?TT% T
0 20 0 b %0
Q [HZ] Q [Hz]
(2) (b)
30
Z20 o Zzo T X
L0 y 1x ET R
Ldex el lettloll ~"liow,rtl1s0%]
0 5 10 15 20 0 5 10 15 20
Q [Hz| Q [He]
(c) (@)

Figure 14: CF in the frequency domain at (a) 200 km/h, (b) 250 km/h, (c) 300 km/h
and (d) 850 km/h. O ASM2 X FEM.

The 20 Hz low-pass filtered CF is represented in the time domain in Fig.
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Again, although the curves do not fit perfectly, a general similarity between
ASM2 and the FEM curves can be appreciated. The discrepancies found at 350

km/h are also present in this temporal representation.

— 140 — 160
= 120 =
= -~ 140
& 100 X 120
80 100
0 20 40 60
z [m]
(a)
Z 250
— 200
= 150
100
0 20 40 60
x [m]
(d)

Figure 15: CF in the time domain at (a) 200 km/h, (b) 250 km/h, (c) 300 km/h
and (d) 850 km/h. —ASM2 - - FEM.

The CF standard deviation o is the variable most often used to quantify cur-
rent collection quality. o can be computed from the CF defined in the frequency

domain as:

AL 2
n=1

where Nyg is the number of harmonics whose frequency 2, is lower than 20 Hz.
The standard deviation o is plotted versus train velocity in Fig. As o de-
pends on the mean CF in the FE model, FEM results are shown with a mean CF
of 70, 80, 90 and 100% of the maximum mean CF allowed by Eq. [II). Despite
all the simplifications introduced in the analytical model, it is able to give a good

approximation of o with respect to the more accurate results obtained from the
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FE model. Especially, the similarity for the maximum mean contact force al-
lowed by the standard is remarkable. Note that the mean CF effect is negligible
for velocities smaller than 250 km/h for the studied pantograph-catenary sys-
tem. In conclusion, the standard deviation calculated with the analytical model
shows that the irregularities in contact wire height have a strong influence on

the CF fluctuations.

ASM?2
b FEM: 70% Fy,
— — FEM: 80% Fy,
= — — — FEM: 90% Fy,
o 20t FEM: 100% Fir, ]

200 250 300 350
v [km/h]

Figure 16: Comparison of the standard deviation of the CF between the ASM2 and

the FE model for different pantograph velocities and different values of the mean CF.

5.3.  Pantograph interference

In a double operation pantograph-catenary dynamic interaction, both CF
pantographs affect each other. However, the interference of the leading panto-
graph on the trailing pantograph is much greater than in the opposite case. In
this section, the trailing pantograph CF is analysed with respect to the pan-
tographs separation distance L. To simplify the analysis, the initial height of
the contact wire zq(z) is considered as a pure harmonic function with frequency
Q.

The CF of both pantographs is obtained by solving Eq. (24]). The amplitude
of the trailing pantograph CF reaches minimum for some L values when the dis-
placement produced by the leading pantograph reaches the trailing pantograph

in phase opposition to the given contact wire height. As obtaining an analytical
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expression for the minimum values of L is rather troublesome, an approximate
w0 analytical solution is proposed below.
As the trailing pantograph has a negligible effect on the leading pantograph
I8, 121], it is assumed here that H12(92) = 0, which implies that the CF of the
leading pantograph is not modified with respect to the single operation scenario.
With this assumption, the solution of Eq. (24)) is:
Py = g (1= Cue O8] gt )y )
s where:
i
(H, + Hu (D)X (6 — ) (9 — 45)

7

(Hp + Hiy () X (k" — kD) (k§ — k3)

a

(47)

Cy =

Deriving the amplitude of F5 to get the L in which it is minimum still leads to a
complex expression and therefore two additional simplifications can be further

introduced:

e The exponential term which includes k§! is not considered due to this wave

470 is strongly damped for velocities lower than v, (see Fig. H).

e As the damping of the remaining exponential term which includes &S’ is
very small, k¥ = 0 is assumed so that the position of the minima are

obtained assuming a non-damped wave.

With these hypotheses, the minima of |F2| are found when:
arg (aniL(Q/”’“?R)) —9mn;:  n=01,2.. (48)

a5 80, for every ) there is a group of equidistant optimal values of L:

2 — arg(Cy)

49
Q/v—i—kgR (49)

Lmin =

For ASM2, the exact value of ’F‘2| (see Eq. (25))) and the approximation given
in Eq. (@8), which assumes negligible interference on the leading pantograph,
are compared In Fig. [[7] for Q@ = 10 Hz and v = 300 km/h. The similarity
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between the two curves is greater for higher L and for L close to the minima,
since the hypothesis assumed is more accurate (minor influence of the trailing
on the leading pantograph), while the minima of both curves are close to the
values given by the approximate expression of Eq. [@J). In short, for every
excitation frequency 2 there are equidistant distances L,,;, for which the CF

amplitude of the trailing pantograph is minimised.

Aprox. .

of
Y I‘\ ! . e — — Exact

Zoogof! 1! ,'\ S (R A
— | | | | | |
SRRV AT ANVANVAN
| | | | |

0 . . . .
20 40 60 80
L [m]

Figure 17: Variation of approrimate and exact analytical CF amplitude of the trailing
pantograph with harmonic contact wire initial height of QQ = 10 Hz, versus pantograph
separation L, at v =300 km/h. The Ly values given by Fq. (@) are represented by

vertical dash-dotted lines.

The optimal behaviour of the trailing pantograph is produced by the syn-
chronisation of the wave generated by the leading pantograph. This physical
mechanism is explained hereunder. The CF phase of the leading pantograph in
single operation I is taken as a reference. This force generates a wave whose
vertical displacement at point 1 (see Fig. [f]), considering only the part due to
kS! is:

oy = Hi7Fy (50)
where:
i
A (kS — k) (RS — K3)

HfY = (51)

The phase of this displacement is ¢,,, = arg(HZ). This wave of wavelength kS,

at point 2 generates a displacement with phase @, = pw, + kgRL due to the
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distance between points 1 and 2. This displacement generates an interference
force F5; on the trailing pantograph whose phase is OFy; = Qu, + arg(Kp),
according to Eq (@3). On the other hand, the CF of the trailing pantograph in
single operation F} has a different phase with respect to the leading pantograph
CF due to the delay between both pantographs, so that ¢r, = —QL/v. The
CF of the trailing pantograph therefore has a minimum amplitude when its
force in single operation is in phase opposition with the interference force, i.e.
Ypi — R =T+ 27n, which is equivalent to Eq. (48]) and after replacing terms

reads:
k2 Q QL
arg(Hy7) + arg(Kp) + kyp L + - =Tt 2mn; n=0,1,2,.. (52)

To conclude this section the phases mentioned above are summarised in

Table

Table 2: Summary of the different phases of the magnitudes involved in the pantograph

interference.
P
Pantograph/point 1 2
QL
CF in single operation 0 -
v
Wave produced by pant. 1 | arg(H¥F2) arg(HFZ) + kS, L
Interference force — arg(HEZ) + kS L + arg(Kp)

5.4.  Double pantograph operation

To verify the accuracy of ASM2 in double pantograph operation the oo
obtained is compared with the FEM results for a wide range of L at the operating
speeds of 200, 250, 300 and 350 km/h (see Fig. [I). In this case, since zo(x)
contains several harmonics (see Fig. [3) the fluctuating oo behaviour versus
changes in L is produced by the contributions of all the CF harmonics, which
fluctuate every L, (). Considering all the differences between the models, the

approximation obtained by the analytical model is reasonably good, especially
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at 300 km/h. Note that the oy obtained from the FE model is higher with
respect to the analytical values when v increases due probably to the effect of
the greater mean CF imposed, according to Eq. {IJ). In fact, a higher value of
o2 at 350 km/h in the FEM model was already given in the single operation
analysis (Fig. [I6).

Although the analytical model does not accurately predict the optimal points
at which oy is minimum, as the FE and ASM2 results have similar magnitude

and shape the analytical model can explain the phenomena present in the pan-

tograph interference.

t
70 ]”| /|A
| I i
60r hyte g l\ll,"‘ Y
. 50|le|1 17l R O TT
i (RN B Y AR AT RY
- 40 l]\’l v I \

20

(d)

Figure 18: SD of the trailing pantograph CF with respect to the distance between
pantographs at (a) 200 km/h, (b) 250 km/h, (c) 300 km/h and (d) 350 km/h. —
ASM2. - - FEM.
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6. Conclusions

The CF variation obtained when the dynamic pantograph-catenary interac-
tion is included in the FEM simulations is due to the combination of several
sources of irregularities (geometric variation of the contact wire, stiffness and
uneven mass distribution, etc.) with complex phenomena (wave propagation
and reflection, complex dynamic response of the model, among others). This
complexity makes these simulations computationally intensive and it is difficult
to infer direct relations between the model input and output variables.

In this paper the enhanced analytical model ASM2 composed of an axially
loaded infinite string with a visco-elastic support was based on that proposed in
[9]. ASM2 includes a Kelvin-Voigt damping model, considers the initial height
of the contact wire and uses the penalty method to model the contact between
the pantograph and the contact wire. It also obtains an analytic expression of
the steady interaction force.

Different strategies were followed to fit the ASM2 parameters in order to
obtain similar behaviour to the more complex FE model. The stiffness of the
support was fitted by considering a static problem, while the proper linear
density of the string was obtained by considering the wavelength generated in
the contact wire by harmonic excitation, and it was verified that the proposed
damping model can produce the same ratio between mean dissipated power and
kinetic energy to that obtained by the FE model.

The CF standard deviation o was computed with the fitted ASM2 for a
wide range of operational speeds (Fig.[If). The results obtained reveal that the
initial contact wire height profile is one of the main factors that contribute to CF
variation and therefore to the current collection quality. The uneven distribution
of the vertical stiffness along the span is another important contribution to the
CF variation, which becomes more important at high mean CF values. Since this
feature is not considered in the analytical model, this can explain the greater
o obtained by the FE for the high velocities at which a greater mean CF is

imposed.
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A more complicated scenario arises when two pantographs interact simul-
taneously with the catenary, since the interference between the pantographs
is a complex phenomenon which depends on wave propagation. Despite this
complexity, the analytical model can separate the string response in harmonic
terms and obtain a simple formula for the optimal distance between the two
pantographs that gives the lowest trailing pantograph CF amplitude for every
harmonic term. ASM2 thus has found the physical mechanism by which the
interference occurs. In a real scenario, with a general height of the contact wire,
the change of the trailing pantograph ¢ with respect to the distance between
pantographs can be approximately predicted by the analytical model, especially
at mid-range velocities.

In short, despite the simplifications and assumptions introduced, the pro-
posed analytical model has been shown to be a basic and efficient tool for the

simulation of pantograph-catenary dynamic interaction.
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Appendix A. Catenary and pantograph data

The values of the input parameters which define the catenary and pantograph
models used in this paper are listed here. The catenary model is composed of 30
spans 65 m long. The spacing between the 7 droppers along the span is defined
in Table [A.3], where SA denotes the steady arm.

The mechanical and the geometric properties of the different wires of the

catenary are given in Table [A.4l
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Table A.3: Dropper spacing along the span.

Droppers SA-1  1-2 23 34 45 56 67 7-SA

d(m) 6 948 8.7 832 832 87 948 6

Table A.4: Mechanical and geometric properties of the catenary elements

p(kg/m?®)  E(MPa) A(mm?) I(mm?) T (N)

94.8 1237.2 15750

150 2170 31500
10 0 3500 (“Y")

9114 1.1-101!
9160 1.1-1011
9114 1.1-1011

Messenger wire
Contact wire

Droppers

The Rayleigh coefficients of the damping model are o = 0.0125 s~ and 8 =
0.0001 s and the constants of the HHT integration method are oy, = —0.05,

580

Bunr = 0.2756, v = 0.55 and At = 0.001 s.
The values of the lumped parameters of the pantograph model can be seen

in Table [A5 The stiffness used in the penalty method is k;, = 50000 N/m.

Table A.5: Parameters of the pantograph model.

d.of. m(kg) ¢(Ns/m) k(N/m)

1 6.6 0 7000
2 5.8 0 14100
3 5.8 70 80
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