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Abstract

In this paper, we propose a general approach to compute the dynamic response

of periodic infinite structures subjected to a moving load. The method only

considers one repetitive block of the structure which is modelled by the Finite

Element Method. The problem is first shifted to the frequency domain where

the periodicity condition is easily applied and then the temporal response is

obtained. An infinite periodic catenary system has been chosen to illustrate

the proposed formulation. The linear formulation is extended to include the

non-linear behaviour of droppers. The efficiency and accuracy of the catenary

model obtained makes it very suitable for use in Hardware in the Loop (HIL)

pantograph tests. We propose to combine this catenary model with an iterative

strategy to achieve the steady-state response of the coupled system and its

performance is analysed in a virtual HIL simulation.
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1. Introduction

1.1. Background

In the last decades, the expansion of electric railway systems has brought an 

important increase in the number of investigations focused on pantograph-

catenary dynamic interaction. The proper sliding contact between both systems 

is crucial to achieve higher velocities, to reduce the wear of the sliding interfaces 

and to ensure a stable and safety operation. The pantograph is a mechanism that 

is mounted on the roof of the locomotive, which keeps contact with the contact 

wire of the catenary by pushing it up. This interaction has been studied by means 

of different techniques as it is described in [1]. Essentially, the three main options 

are: numerical simulations, hardware-in-the-loop (HIL) tests or hybrid 

simulations and in-line testing.

Numerical simulations are widely used being the Finite Element Method 

(FEM) the most chosen approach. A deep analysis of the results of a pantograph-

catenary interaction benchmark can be found in [2] and the references therein, 

which included the participation of 10 international research groups. Hybrid 

simulations or HIL tests are in the midway between numerical simulations and 

in-line testing. They consist on splitting the whole system into two substruc-

tures, being one of them replaced by a numerical model while the other is phys-

ically present in the simulation. The interaction between both systems, namely 

the virtual and the physical, is carried out by an interface made up by sensors 

and actuators. An insightful review of hybrid simulations applied to different 

systems can be found in [3]. This approach has also been applied successfully to 

the pantograph-catenary system [4]. In this case, the pantograph is the physical 

substructure and the catenary is replaced by a numerical model playing the role 

of the virtual system.

1.2. Problem of interest

The implementation of HIL pantograph tests involves certain issues and 

challenges. The catenary model must be solved in real time while keeping a
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high accuracy and there is usually a control-loop delay between the contact force 

measurement time and the imposition to the pantograph collector of the 

displacement computed from the catenary model. In order to solve these issues, 

some authors proposed different degrees of simplification in the catenary model 

used that compromise the accuracy of the results obtained. This work is aimed at 

setting an entire framework that allows HIL testing with a high accuracy in the 

catenary model.

As depicted in Fig. 1, a catenary section is composed of a succession of spans. 

In its central region they use to be equal, which leads to a repetitive structure 

that presents a steady-state response when interacting with the pantograph. 

We choose the FEM to model the catenary and we assume the hypothesis of 

periodicity that is representative of the most part of the catenary. Further-

more, to achieve realistic results, the non-linear behaviour of droppers must be 

considered, which is also a challenge dealt with in this work.

However, if we consider a steady-state response it can present some disad-

vantages such as the inability to consider uneven spans, realistic contact wire 

irregularities and overlaps between consecutive sections. The influence of these 

phenomena was studied in [5, 6], concluding that their effect is not the most 

significant on the overall catenary dynamic response.

The procedure to implement a HIL test with a periodic catenary model 

includes two clearly differentiated parts. The first stage consists on creating a 

periodic catenary FEM model which reproduces the steady-state regime subject 

to a constant velocity moving load. In the formulation proposed in this work, 

only one span is discretised by the FEM and periodic boundary conditions are 

applied on the ends of the model to avoid modelling the entire catenary. The 

second stage is focused on defining a methodology to use the proposed periodic 

model, which represents the steady-state response of the catenary, in a HIL 

pantograph test, which unavoidably presents control-loop delays and an initial 

transient regime.
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Figure 1: Main components of a railway catenary.
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1.3. Literature review

In this subsection we present a literature review of the problem addressed 

in this work, distinguishing the works related to periodic models subjected to 

moving loads and the works that deal with HIL pantograph tests.

A broad overview of the dynamic response of structures under moving loads 

can be found in [7], in which the solution of different moving-load problems are 

discussed from an analytical point of view. The study of this type of prob-lems 

has gained interest in the analysis of the steady-state response of systems such as 

rails, overhead contact lines or bridges. This problem has been tra-ditionally 

addressed with analytic models based on a periodically supported infinite string/

beam [8–10]. These approaches have in common the considera-tion of a periodic 

solution which allows considering only a repetitive block of the model between 

two consecutive supports. Specifically, an infinite periodic Euler-Bernoulli beam 

subjected to a uniform moving harmonic pressure field is used in [8] to simulate 

the dynamic behaviour of the rail. The differential equation is solved in the 

domain defined between two supports to which appro-priate boundary 

periodicity conditions are applied. A similar model is proposed in [9], in which a 

modal representation results in a system of uncoupled differ-ential equations. 

The limit of the solution of such a system when the number of blocks tends to 

infinity is computed for a moving constant load. The same problem is also solved 

in [10], applying the Fourier Transform to shift to the frequency domain where 

the periodicity condition is more easily formulated. The solution in the frequency 

domain is moved back to the time domain by the Inverse Fourier Transform.
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The main limitation to the previous solutions is the simplicity of the model 

used, with which it is not possible to model more complex structures. To this end, 

some solutions are proposed in the literature. An extension of the approach given 

in [10] is presented in [11] to solve a catenary model that includes two in-

terconnected strings. Two-and-a-half dimensional (2.5D) Finite Element models 

appear as an alternative to solve infinite periodic structures with constant cross 

section. This strategy is applied in [12], to model a rail. Fourier Transform with 

respect to space and time is performed to solve the problem which allows the 

application of the periodicity condition on the reactions of the supports in the 

frequency domain. The same authors presented an improved model in [13] where 

the dynamic interaction of multiple wheels with the periodic model is computed by 

means of Fourier series decomposition of the contact force.

A more general method is the so-called Wave Finite Element Method (WFEM) 

that is not only used to model infinite periodic structures, but also can be ap-plied 

to finite periodic structures [14, 15]. WFEM is used in [16] to obtain the frequency 

response function of a periodic infinite structure which is used to compute the 

response of the system excited by a moving load. WFEM also allows to consider 

structures with transition zones [15].

Regarding the HIL tests applied to the pantograph-catenary interaction, it can 

be found in the literature several solutions that include different degrees of 

simplification to carry out the tests. The first works that presented a pantograph 

HIL test rig were [17, 18]. They used a finite length linear catenary model based on 

a truncated modal approach. Another HIL set-up was proposed in [19] with a 

simple catenary model composed of three spans and a sliding window strategy. 

This model was upgraded in [20] with the consideration of dropper slackening and 

in [21], with the incorporation of lateral movement to the test rig to simulate the 

catenary stagger. A linear catenary model is used in [22] for HIL tests using 3D 

Euler-Bernoulli beams discretised with finite differences based on a moving 

coordinate formulation in combination with an absorbing boundary layer to 

attenuate outgoing waves. Other appealing catenary model intended to perform 

HIL pantograph tests was proposed in [23]. It is based on a modal truncation
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of a full FE model, which would allow to consider non-periodic features such as 

overlaps or installations errors. However, the practical use of this model in HIL 

tests is challenging due to the presence of control-loop delays that can make the 

test unstable.

1.4. Scope and contributions of this study

This paper is aimed at: i) solving the steady-state interaction of constant 

velocity moving loads with periodic structures modelled by the FEM and ii) 

proposing an strategy to use that solution to perform HIL tests. The global 

objective is to define a complete framework to perform high fidelity HIL panto-

graph tests dealing with the usual control-loop delay that appears in this type of 

tests.

The Periodic Finite Element Model (PFEM) of the catenary proposed ac-

complishes the first aim of this work and overcomes some of the limitations of 

other models found in the literature. The PFEM allows modelling more complex 

structures than the analytical models [8–10, 10], multi-strings models [10, 11] and 

2.5D FEM models [12, 13]. Furthermore, it is a general method that can be 

applied to any periodic structure modelled by the FEM. WFEM [14, 15] can 

provide a similar solution by means of the method proposed in [16], however, 

when WFEM is applied to slender structures with long spatial period such as a 

railway catenary, some numerical problems arise making its solution not usable 

in practise. Additionally, control-loop delays can be easily handled with the 

catenary PFEM unlike with full FE catenary models, in which the response of the 

catenary in future steps is not known in advance.

The final proposed model results very suitable for its application in HIL tests 

and provides more accurate results than other catenary models used for this 

purpose. In [17, 18], the accuracy of the model is limited due to either the severe 

modal truncation considered or the small length of the system modelled to fulfil 

both memory requirements and real-time performance. Sliding window methods 

[19–21] also focus on the steady-state response but the boundary con-ditions 

imposed lead to not negligible errors. Even in [22], in which boundary
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layers are used to avoid undesirable effects on the ends of the model, the fidelity 

of the results is compromised. The model proposed in this paper avoids these 

boundary effects by considering periodic boundary conditions that lead to the 

proper steady-state response. Additionally, it has the potential to compensate the 

control-loop delay that appears in HIL tests. Unlike most models found in the 

literature, other important contribution of this work relies on considering the 

non-linear behaviour of droppers, which are not able to hold compressive forces. 

This feature is essential to obtain high-fidelity results in HIL pantograph tests.

The second aim of this work is accomplished by adapting the iterative pro-

cedure proposed in [24] to the scenario of a periodic catenary model. This pro-

cedure allows both the virtual catenary and the physical pantograph to achieve 

the steady-state regime in a HIL test.

1.5. Organisation of the paper

The paper is structured as follows. The case of study of this work is described 

in Section 2. In Section 3, the impulse response of the catenary FE model with 

periodicity conditions is computed by solving the problem in the frequency 

domain. This impulse response is used in Section 4 combined with an iterative 

procedure to perform HIL pantograph tests. The model is enhanced in Section 5 

to include the non-linear behaviour of droppers and some numerical results to 

verify the computational costs and the accuracy of the proposed model are 

presented in Section 6. A discussion and the main concluding remarks are given 

in Section 7. Finally, a demonstrative example that facilitates the reproduction 

of some numerical results is included in Appendix A.

2. Description of the case study

170

The formulation developed in this paper is general in the sense that it can be 

applied to any periodic structure as long as it can be modelled by the FEM. 

However, as the final goal of this study is to perform HIL pantograph tests, the 

proposed formulation is applied to a railway catenary model along the paper.
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As depicted in Fig. 1, a catenary is mainly composed of a contact wire, which 

interacts with the pantograph and is held by the messenger wire through verti-cal 

cables called droppers. The wiring is supported at regular intervals defining a 

span between two consecutive supports. The parameters that define the cate-

nary and the pantograph models which are used to obtain the results presented in 

Section 6 can be found in [2]. Additionally, the pantograph-catenary dy-namic 

interaction is solved according to the method proposed in [25] when full FE 

simulations are required for comparison and validation purposes.

To obtain the PFEM proposed in this work it is only necessary to obtain 

the FE model of the repeated block of the structure, in this case one span 

of the catenary, to apply the formulation described in the following sections. 

The resulting catenary PFEM is suitable to perform HIL pantograph tests in 

which the contact force applied to the pantograph collectors is measured and the 

displacement of the contact point obtained from the catenary PFEM is imposed 

by means of an actuator. In this work, all the HIL environment is treated by 

means of simulations, leaving for future work the application to real HIL tests. 

To this end, the physical substructure (i.e. the pantograph) is also simulated 

with a numerical model to evaluate the capabilities of the proposed method.190

3. Impulse response of the catenary

195

200

In this section, we present a general method to obtain the impulse response 

of an infinite periodic structure subject to a periodic load moving at constant 

speed. To illustrate the method, a railway catenary has been chosen as shown 

in Fig. 2. As a periodic structure, the catenary is subdivided into consecutive 

blocks b of length L, which are repeated infinitely in the longitudinal direction 

e1. A 2D catenary is depicted in Fig. 2 in which each periodic block b is a single 

span. In the case of a 3D catenary, the repetitive block would consist of two 

spans, due to the stagger arrangement of the catenary wires. It is important to 

note that, as opposed to applying moving window strategies, the accuracy of 

the proposed method is not further improved by including more spans into the

8
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Figure 2: Catenary as a periodic infinite structure and Finite Element discretization 

of block b = 0.

repetitive block.

The pantograph moves at a constant speed V and the interaction with the 

catenary will be indefinitely repeated at every block if one considers that the 

stationary state is achieved. Therefore, the external contact force applied to the 

catenary is a periodic moving load of period T = L/V .

Under the hypothesis of periodic interaction, any force applied in a given 

block b is actually applied sequentially in every block b ∈ [−∞, ∞] at the 

same instant with respect to that in which the pantograph started to interact 

with each block. It is possible to calculate the impulse response produced by a 

sequence of unit impulses f b(yb, t), which are periodically applied in each block 

b (only once per block) at points yb and at time t = bT , as depicted in Fig. 2.

The sequence of unit impulses that defines the impulse response can be 

defined as:

f b(yb, t) = δ(t − bT ) b = −∞, . . . , ∞ (1)

in which δ is the Dirac function and they are applied to every block b at the

9



global coordinate yb = y + bLe1.

Given a point y in the reference block b = 0, the sequence of infinite

unit impulses f b(y, t) produces the catenary displacement u(t, x, y) at point

x. In this case, this is the unit impulse response h(t, x, y) under periodic con-

ditions. Note that the coordinates of the excitation point are denoted by vector220

y = [y1, y2, y3]⊤ whereas, the coordinates of the point at which the response is

measured are referred to as x = [x1, x2, x3]⊤. Both the impulse excitation f b

and catenary displacement u can be defined in an arbitrary direction, which are

not explicitly indicated for simplification in the notation.

The stationary response of the catenary u, will be repeated in each block.225

Thus, for a given point x, the periodicity condition reads as:

u(t, x, y) = u(t − bT, x + bLe1, y) (2)

which allows the description of the response of the entire catenary with that of a

single block, so that the response of the reference block b = 0 will be considered

herein after. If this reference block is discretised by the Finite Element Method

(FEM), the displacements of its Ndof nodal degrees of freedom are denoted by230

u0(t, y) or u(t, y) in which superscript 0 is deleted for simplicity in the notation.

The nodes of the FE mesh of the reference block can be divided into left (L)

and right (R) boundary nodes and inner (I) nodes as shown in Fig. 2.

3.1. Frequency Response Function

The impulse response of the above described infinite periodic system will235

be obtained by considering only the reference block [8–10] and imposing the

periodicity condition defined in Eq. (2). Some authors have solved this problem

by applying the Floquet decomposition [26]. However, we followed the strategy

proposed in [10, 11], which is based on the movement of the problem to the

frequency domain in which the periodicity condition is more easily stated. Thus,240

we first need to find the Frequency Response Function (FRF) that relates the

displacement of point x to a harmonic unit force of frequency ω applied at point

y.
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Without loss of generality, in this work, the displacements of inner and right

boundary nodes, uI(t) and uR(t) respectively, are chosen as the unknowns of245

the problem. Displacements of the left boundary nodes uL must fulfil Eq. (2),

that is:

uL(t) = uR(t + T ) (3)

which after applying the Fourier Transform, it becomes:

UL(ω) = eiωT UR(ω) (4)

being UL,I,R(ω) the Fourier Transform of uL,I,R(t), respectively.

The nodal equivalent external force vector F can be divided into left, inner250

and right nodal degrees of freedom, namely FL, FI and FR, respectively. If the

degrees of freedom of left and right boundary nodes are properly defined (mesh

compatibility), FL and FR are related through the following equation:

FL = eiωT FR (5)

The FRF of the system can be found by solving the following problem for

every frequency:255

D(ω) U = F + R

D(ω) = K + iωC − ω2M

(6)

where M is the mass matrix, K the stiffness matrix and C the damping matrix

of the substructure contained in a single block. The reaction force vector R,

applied to the left and right boundary nodes R = [RL, 0, RR]⊤, is also un-

known. Eq. (6) can be rearranged in left boundary, inner and right boundary

degrees of freedom:260











DLL DLI DLR

DIL DII DIR

DRL DRI DRR





























UL

UI

UR



















=



















FL

FI

FR



















+



















RL

0

RR



















(7)

Considering again the periodicity condition and the action reaction principle,

the reaction force vector in the left and right boundary RL and RR are related
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by:

RL = −eiωT RR (8)

Introducing Eqs. (4) and (5) to Eq. (7):











DLI DLR + eiωT DLL

DII DIR + eiωT DIL

DRI DRR + eiωT DRL

















UI

UR







=



















eiωT FR

FI

FR



















+



















RL

0

RR



















(9)

and then using Eq. (8), the unknowns can be rearranged to the left-hand side:265











DLI DLR + eiωT DLL eiωT I

DII DIR + eiωT DIL 0

DRI DRR + eiωT DRL −I





























UI

UR

RR



















=











0 eiωT I

I 0

0 I

















FI

FR







(10)

in which I denotes for the identity matrix. Problem (10) can be solved as:



















UI

UR

RR



















= Ĥ(ω)







FI

FR







(11)

where:

Ĥ(ω) =











DLI DLR + eiωT DLL eiωT I

DII DIR + eiωT DIL 0

DRI DRR + eiωT DRL −I











−1 









0 eiωT I

I 0

0 I











(12)

Eq. (11) can be rewritten in terms of the displacements of the block as:



















UL

UI

UR



















= H(ω)







FI

FR







(13)

with

H(ω) =











eiωT ĤR(ω)

ĤI(ω)

ĤR(ω)











(14)

in which ĤI(ω) and ĤR(ω) are the two first rows of Ĥ(ω).270
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3.2. Impulse response

Eq. (13) relates nodal displacements with nodal forces of the entire block

by means of the FRF H(ω). However, we are interested in the displacement

of point x produced by a unit harmonic force Fu applied at point y in the

reference block. The FEM operator N(x) = [NL(x), NI(x), NR(x)] is the275

1 × Ndof matrix, composed of nodal shape functions that transforms nodal

displacements into point displacements in a given direction and can also be

used to transform point forces to nodal equivalent forces.

With this operator, the nodal equivalent forces relative to the unit force Fu

can be written as:280







FI

FR







=







NI(y)⊤

NR(y)⊤ + e−iωT NL(y)⊤







(15)

in which the term e−iωT NL(y)⊤ considers the nodal forces at the right boundary

of the reference block (b = 0) that would appear if the unit force was applied

on the next block (b = 1). Note that this contribution is only active if the unit

force is applied on an element of the reference block that has some node on the

left boundary.285

With the use of the operator N(x) applied to the right-hand side of Eq. (13)

and including Eq. (15), it is possible to compute the harmonic displacement of

point x when a unit harmonic force acts at y:

I(ω, x, y) = N(x) H(ω)







NI(y)⊤

NR(y)⊤ + e−iωT NL(y)⊤







(16)

As the structure is modelled with FEM, Eq. (16) cannot be analytically

defined but is computed for a discrete number of frequencies Nf with a frequency290

increment ∆ω:

ωk = k∆ω k = 0, . . . , Nf − 1 (17)

In addition, time t is also discretised with a time increment ∆t:

tn = n∆t (18)
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Thus, applying the Inverse Discrete Fourier Transform to Eq. (16), the impulse

response at time step tn is obtained as:

h(tn, x, y) =

Nf −1
∑

k=0

akRe
(

I(ωk, x, y) eiωkn∆t
)

∆ω (19)

being ak = 2 if k 6= 0 or ak = 1 if k = 0.295

It is important to remark that there is no relation between ∆ω and the

period T . In practise, ∆ω has to be chosen little enough to obtain an accurate

time response and Nf is limited by ∆t to avoid aliasing effects.

4. Hardware In the Loop test methodology with a linear catenary

model300

The concept of Hardware In the Loop (HIL) tests applied to railway pan-

tographs consists of hybrid simulations with a virtual catenary model and a

physical pantograph (see Fig. 3). In these tests, the catenary is replaced by an

actuator that interacts with a real pantograph and simulates the vertical move-

ment of the catenary contact point. The contact force measured in the test rig305

is the input of the virtual catenary model which must supply the contact point

vertical position in real time.

Virtual

catenary

Measured fc

zc
Controller

Figure 3: Scheme of a HIL pantograph test.

Eq. (19) condenses the linear behaviour of the periodic catenary under a

moving periodic load, so that non-linear effects such as dropper slackening are

not considered in this section. Thus, the general response can be obtained with310

the load applied at the contact wire of a single block.

14



The pantograph is virtually moving at a constant speed V and applies a

vertical excitation over the contact wire of the catenary model. ∆t is chosen so

that the contact wire of a periodic block of length L is divided in Nc virtual

contact points ycw(tn) with n = 0, . . . , Nc − 1.315

zc

V

zcw

uc

Figure 4: Pantograph interaction with the periodic catenary.

If the contact force fc(tn) applied to a virtual contact point ycw(tn) is as-

sumed to be known, Eq. (19) can be particularised to compute the vertical

displacement u(tn, x) of a given point x, by applying the superposition princi-

ple as the sum of the contribution of each force applied on the block:

u(tn, x) =

Nc−1
∑

n̂=0

h(tn − tn̂, x, ycw(tn̂)) fc(tn̂)∆t (20)

Note that n̂ denotes the time instant at which the force is applied and n, the320

instant at which the displacement is evaluated. It should also be noted that the

origin of time in the impulse response function (Eq. (19)) corresponds to the

instant at which the impulse is applied. However, in Eq. (20), tn = 0 which is

the time step at which the force is applied at the beginning of the block. This

is the reason why the impulse function is evaluated at tn − tn̂.325

For the pantograph interaction, we are interested in the displacement of the

contact point uc(tn) = u(tn, xcw(tn)). Therefore, Eq. (20) can be evaluated at

15



this point as:

uc(tn) = u(tn, xcw(tn)) =

Nc−1
∑

n̂=0

I(n, n̂) fc(tn̂) (21)

in which:

I(n, n̂) = h(tn − tn̂, xcw(tn), ycw(tn̂))∆t (22)

In addition to the displacement due to interaction with the pantograph,330

the vertical position of the contact wire depends on the static configuration

of the catenary. If zcw(tn) is the contact wire height at the initial catenary

configuration, the global height of the contact point at time step n can be

obtained, as shown in Fig. 4, from:

zc(tn) = zcw(tn) + uc(tn) (23)

Eq. (21) condenses in a Nc × Nc matrix I(n, n̂) the steady-state vertical335

displacement of the contact point at time tn as a function of the stationary

force applied in all contact points of the block at time tn̂ for n̂ = 0, ..., Nc − 1.

It is important to note that when the force is measured and applied at a given

time step n̄ ∈ n̂, the response for all the time steps n is affected.

Matrix I(n, n̂) can be precomputed making the proposed model very suit-340

able for use in HIL testing because few operations are required to obtain the

contact point response. We propose to apply this model in combination with

an algorithm in which the measured contact force is iteratively updated until

the steady-state response is achieved.

Defining k as the global counter of each step or iteration of the HIL test, at345

the beginning of the test (k = 0), a set of Nc (the number of contact points in a

block) null values of the contact force are considered, so that zc(tn) = zcw(tn).

At a given iteration k, the contact force is measured at time step n̄ relative to

the beginning of the current block b. In this step, only the contact force values

measured from t0 to tn̄ are available in the current block. To complete the set of350

Nc measures of contact force required to compute the response of the catenary

model, the contact force values from tn̄+1 to tNc−1 are taken from the previous
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block b − 1. Thus, by combining Eqs. (23) and (21) the contact point height in

iteration k is computed as:

zk
c (tn) = zcw(tn) +

n̄
∑

n̂=0

I(n, n̂) f b
c (tn̂) +

Nc−1
∑

n̂=n̄+1

I(n, n̂) f b−1
c (tn̂) (24)

Note that the response zc(tn), defined from t0 to tNc−1, must be updated for all355

tn every iteration k.

k − 1

n̂

n̂

0

0

1

1

2

2

3

3

4

4

5

5

Nc-1

Nc-1

Current force value n̄

k

Current block Previous block

− f b−1
c (tn̄)

+ f b
c (tn̄)

Figure 5: Modification of the set of Nc force values by replacing fb−1

c (tn̄) by fb

c (tn̄)

at two consecutive iterations.

Eq. (24) can be rewritten based on the difference of the measured contact

force of the current block and that of the same instant of the previous block.

That is:

zk
c (tn) = zk−1

c (tn) + I(n, n̄)
(

f b
c (tn̄) − f b−1

c (tn̄)
)

(25)

360

365

This strategy is schematically illustrated at Fig. 5.

Once the contact wire height is available, only the vertical position of the 

contact point for the next time step zc
k(tn̄+1) is sent to the actuator. The 

method runs iteratively step by step until the measured contact force in two 

consecutive blocks matches with a given tolerance.

The methodology explained so far is exemplified in Appendix A by means of a 

very simple academic model that allows the numerical results to be better 

understood and reproduced.
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5. Hardware in the loop method with nonlinear catenary model

The HIL procedure explained in Section 4 is now extended to include the

non-linear behaviour of droppers. We use the same idea introduced in [25]370

but adapted to account for the periodic nature of the system. The proposed

formulation is developed in two stages. In the first, the response is computed

with assumption to the linear model described in Section 4. The second is

devoted to apply correction forces to the slackened droppers.

5.1. Dropper correction forces375

The static equilibrium problem in a catenary system is a non-linear prob-

lem governed by large displacements. However, the dynamic behaviour can be

linearised around the static equilibrium position in which each dropper d has

a tension value fd0 and a stiffness kd in the dropper direction. Droppers are

cables that cannot exert compression forces. However, these compression forces380

are considered in the linear catenary model in which the tension of dropper d

is computed as f = kd∆Ld (dashed line in Fig. 6(a)). To satisfy the condition

of no compression forces, the internal force of a dropper must be greater than

-fd0 (continuous line in Fig. 6(a)). Thus, a correction force fd must be applied

to correct the linear behaviour as shown in Fig. 6(a). This consists of two com-385

pression forces applied at both ends of the dropper yd,inf and yd,sup, as depicted

in Fig. 6(b).

f

∆Ld

fd

kd

1

-fd0

(a)

fd

yd,sup

fd

yd,inf

(b)

Figure 6: (a) Non-linear behaviour of droppers. (b) Correction forces fd applied on

dropper d.
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5.2. Unitary operators

In this subsection, we attempt to explain the influence which a periodic

sequence of unitary impulses applied on contact points and dropper ends has390

on the displacement of these points.

We first define the dropper elongation ∆Ld as:

∆Ld = u(xd,sup) − u(xd,inf) (26)

I(n, n̂) in Eq. (21) can be redefined as I
c
c(n, n̂) in which the subscript c denotes

that the excitation is produced by the contact force and the superscript c indi-

cates that the response is evaluated at the contact point. With this notation,395

the displacement of the contact point produced by the contact force defined in

Eq. (21) is now renamed:

ul
c(tn) =

Nc−1
∑

n̂=0

I
c
c(n, n̂) fc(tn̂) (27)

Superscript l is used to point out the fact that this displacement is considered

the linear part of the total response.

Dropper elongation due to the contact force is:400

∆Ll
d(tn) =

Nc−1
∑

n̂=0

I
d
c(n, n̂) fc(tn̂) (28)

in which:

I
d
c(n, n̂) = [h(tn − tn̂, xd,sup, ycw(tn̂)) − h(tn − tn̂, xd,inf , ycw(tn̂))] ∆t (29)

To include the influence of dropper correction forces in the catenary response,

we first assume that the dropper correction force fd(tn) of dropper d at tn is

known. It is important to remark that the correction of the infinite droppers of

the catenary model at all time steps should be considered because they affect405

the response on the contact point at time step n̄. In practise however, dropper

correction will not be considered in time instants at which the pantograph is far

enough from the reference block because it is highly improbable that a dropper

slackens and in such a case, its influence on the pantograph interaction has been
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proven to be negligible. Thus, dropper correction is active only at time instants410

from t−nb
to tna

.

The displacement produced on the contact point due to dropper correction

forces is called the non-linear part of the response (denoted by superscript nl)

and is defined as:

unl
c (tn) =

Nd
∑

d=1

na
∑

n̂=−nb

I
c
d(n, n̂) fd(tn̂) (30)

in which Nd is the number of droppers of the reference block and415

I
c
d(n, n̂) =

[

h(tn − tn̂, xcw(tn), yd,inf) − h(tn − tn̂, xcw(tn), yd,sup)
]

∆t (31)

Dropper d elongation caused by the correction forces applied to dropper d̂

are computed from:

∆Lnl
d (tn) =

Nd
∑

d̂=1

na
∑

n̂=−nb

I
d

d̂
(n, n̂) f

d̂
(tn̂) (32)

being

I
d

d̂
(n, n̂) =

[

h(tn − tn̂, xd,sup, y
d̂,inf

) − h(tn − tn̂, xd,sup, y
d̂,sup

)
]

∆t

−
[

h(tn − tn̂, xd,inf , y
d̂,inf

) − h(tn − tn̂, xd,inf , y
d̂,sup

)
]

∆t (33)

The total response can be obtained by adding the linear (l) and non-linear (nl)

contributions defined above.

5.3. HIL with dropper correction forces420

The same procedure as that defined in Section 4 is used here but now,

dropper correction forces are added to the system. It is important to highlight

that dropper correction forces can be applied at instants before and after the

time instants at which the pantograph stays within the domain of the block (tn̂

for n̂ = 0, ..., Nc − 1).425

At a given iteration k, the first step consists of updating the response due

to the contact force measured at tn̄ as in Eq. (25):

ul,k
c (tn) = uk−1

c (tn) + I
c
c(n, n̄)

(

f b
c (tn̄) − f b−1

c (tn̄)
)

(34)
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In this case, it is also necessary to update the elongation of droppers due to this

contact force:

∆Ll,k
d (tn) = ∆Lk−1

d (tn) + I
d
c(n, n̄)

(

f b
c (tn̄) − f b−1

c (tn̄)
)

(35)

The second stage consists of modifying the response according to the effect of430

dropper correction forces. Note that the dropper corrections forces fd(tn̂) are

applied at time instants tn̂ for n̂ = −nb, ..., na (a bigger interval than [0, Nc−1]).

Thus, at every iteration k, fd must be calculated in several instants in order

to include all the instants from −nb to na. For example, if −nb = −Nc and

na = 2Nc−1, which means that dropper correction is active since the pantograph435

gets into the previous block (b = −1) until the pantograph gets off the next block

(b = 1), fd must be computed and applied at three instants of time, namely tn̄,

tn̄−Nc
and tn̄+Nc

.

The effect of dropper correction forces modifies the linear response defined

in Eqs. (34) and (35) so that:440

uk
c (tn) = ul,k

c (tn) +

Nd
∑

d=1

∑

n̂=n̄d

I
c
d(n, n̂)

(

f b
d(tn̂) − f b−1

d (tn̂)
)

(36)

∆Lk
d(tn) = ∆Ll,k

d (tn) +

Nd
∑

d̂=1

∑

n̂=n̄d

I
d

d̂
(n, n̂)

(

f b

d̂
(tn̂) − f b−1

d̂
(tn̂)

)

(37)

in which n̄d considers all the instants included into [−nb, na] that are spaced

Nc steps from the current measuring time n̄. For the choice of −nb and na

indicated above, n̄d = [n̄, n̄ − Nc, n̄ + Nc]. This is equivalent to applying this

correction to the droppers of the previous and next blocks at the current instant445

tn̄.

At this point, the dropper correction forces f b
d(tn̄d

) are the only magnitudes

left to calculate to know the response at iteration k. First, we must find out

the droppers to which the correction must be applied. To this end, the dropper

state Ok
d defines the slackening state of dropper d, being equal to 0 if the dropper450
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is tensed and 1 if it is slackened. At time n̄d, it reads:

O
k
d(tn̄d

) =







0 if kd ∆Ll,k
d (tn̄d

) ≥ −fd0

1 if kd ∆Ll,k
d (tn̄d

) < −fd0

(38)

in which ∆Ll,k
d (tn̄d

) is obtained from Eq. (35).

As shown in Fig. 6(a), the dropper correction force can be written as:

f b
d(tn̄d

) = O
k
d(tn̄d

)
(

−fd0 − kd∆Lk
d(tn̄d

)
)

(39)

According to Eq. (37), the previous equation becomes:

f b
d(tn̄d

) = O
k
d(tn̄d

)

(

− fd0 − kd

(

∆Ll,k
d (tn̄d

)+

Nd
∑

d̂=1

∑

n̂=n̄d

I
d

d̂
(n̄d, n̂)

(

f b

d̂
(tn̂) − f b−1

d̂
(tn̂)

)

))

(40)

This is a system of Nd × Nn̄d
linear equations that allows to calculate the

dropper correction forces f b
d(tn̄d

). Note that Nn̄d
is the number of time steps455

included in n̄d and the system is in practice reduced since some of the equations

become f b
d(tn̄d

) = 0 because dropper correction is not active in dropper d at

some instants considered in n̄d.

The final response at iteration k, including dropper correction, is calculated

with Eqs. (36) and (37). Dropper state can change once the correction is applied460

but it is not necessary to recalculate it. If the convergence is achieved after

several blocks, the difference between the response in two consecutive blocks

tends to zero and the stationary dropper state is achieved.

6. Numerical results

In this section, the algorithm proposed is tested in a virtual HIL simulation465

in which a numerical pantograph model is used to replace the real pantograph

used in a standard HIL test. The time integration of the pantograph model is

carried out independently of the catenary model by means of the Hilber-Hughes-

Taylor (HHT) integration method [27]. In this virtual test, the displacement of
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the catenary contact point obtained from Eq. (36) is imposed on the pantograph470

model and the contact force in the next time step is computed. Unlike in a real

HIL test in which this force would be measured by load cells, in the simulated

test, a penalty stiffness is used [2].

To validate the method, the results obtained in the virtual HIL test are

compared with a FEM conventional simulation. It is noteworthy to mention475

that the virtual HIL test assumes an infinite periodic catenary while the size

of conventional FEM model is limited by the number of degrees of freedom.

However, we have made a long enough catenary section so that the steady-

state regime can be assumed on its central spans. In this way, transient effects

are negligible due to the notable length of the FEM catenary model and it480

is expected to obtain the same solution in both the proposed periodic model

(PFEM), and the finite length FEM model.

Specifically, in this example, we chose the catenary model used in the bench-

mark exercise [2] with spans (or blocks) of 55 m in length having 9 droppers

and 55 mm of pre-sag in the contact wire each of them. A Rayleigh damping485

model is used with C = βK + γM, being β = 10−4 s and γ = 1.25 · 10−2 s−1.

For the pantograph, a lumped mass model with 3 vertical degrees of freedom is

used whose parameters are provided in Table 1. The penalty stiffness used in

the contact model is kh = 50000 N/m according to [2].

Table 1: Parameters of the pantograph model.

d.o.f. m(kg) c(Ns/m) k(N/m)

1 6.6 0 7000

2 5.8 0 14100

3 5.8 70 80

In the PFEM, the catenary impulse responses have to be computed for a490

discrete number of frequencies (see Eq. (17)). We have found that ∆ω = 0.025

rad/s with a maximum frequency ωmax = 750 rad/s are accurate enough values.
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Note that the frequency resolution ∆ω must be small enough to guarantee a

large period 2π/∆ω of the functions to which the DFT is applied. In turn, the

maximum frequency involved in the IDFT must be high enough to provide a495

fine time discretisation of the nodal forces. The time resolution is chosen to

∆t = 1 ms, a value which is smaller than π/ωmax to avoid aliasing effects. This

value is also used for time integration of the pantograph model, although in this

case, a smaller value could be used.

In the numerical case analysed in this section, the velocity of the pantograph500

is set at 250 km/h and the virtual HIL simulation runs until there is not notice-

able differences in the computed contact force of two consecutive blocks. To ease

convergence of the virtual HIL test, during the first 20 s of the simulation, the

displacement of the catenary contact point that is imposed on the pantograph

model is scaled by a factor that increases linearly from 0 to 1. This is reflected505

in the increasing values in the first blocks of the results shown in this example

(see Fig. 7 and Fig. 8).

Figure 7: Contact force evolution.
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Figure 8: Dropper correction forces evolution.

The contact force obtained in successive blocks of the virtual test is depicted

in Fig. 7 in which only one in three curves are shown for a better visualisation

of the figure. The non-linear correction forces of droppers 2 to 8 (Eq. (39)) can510

be seen in Fig. 8 from left to right and again one in three curves are displayed.

Note that the first and last droppers do not present any correction force since

they do not slacken due to their greater initial tensile force caused by the pre-

sag of the contact wire. The two black dashed lines show the times in which

the pantograph is placed inside the reference block from t = 0 to t = 0.792 s.515

However, dropper correction forces are also computed outside this period but

they are null in this example. Specifically, the period in which dropper correction

is active covers two blocks, from step −nb = 80 to na = 1504.

As seen in both figures, convergence is properly achieved, although it is

important to mention that some convergence issues can arise if the periodic520

structure is very low damped. Thus, a certain amount of damping is required

to guarantee the convergence of the proposed approach.

In order to validate the results, the converged contact force obtained from the

catenary PFEM is compared in Fig. 9 with the contact force of three consecutive

central blocks computed with a conventional FEM simulation. We have used525

two catenary models with different length, namely 15 and 30 spans respectively.

The FEM solutions show minor differences with the contact force obtained from
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Figure 9: Comparison of contact force of catenary PFEM (solid line) with those

obtained in three central spans of the section of a FE catenary model with 15 spans

(dashed line) and 30 spans (dash-dotted line).

the PFEM. These differences are even smaller with the 30-spans FE catenary

model because a more stationary response is achieved on these central spans.

The converged dropper correction forces obtained from the catenary PFEM530

are also compared with those obtained from the longest FE catenary model in

Fig. 10. As can be seen in both figures, the results provided by the proposed

catenary PFEM are validated according to their great similarities with those

obtained from a FEM simulation with a large enough catenary model.
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Figure 10: Comparison of dropper correction forces from catenary PFEM (solid lines)

with those obtained in a central span of a FE catenary model with 30 spans (dashed

lines).

Regarding the computational cost required to obtain the PFEM solution, a535

distinction must be made between the off-line and on-line stages. The former

takes a relatively long computation time which mainly includes the FRF of the

catenary periodic block and the unitary impulse response functions. Specifically,

for the example previously analysed, it takes approximately 30 minutes in a

conventional computer.540

The on-line stage covers the computations that must fulfil real-time perfor-

mance to perform HIL tests. For a given time-step tn, the measured contact

force is taken as input and the contact point height must be given before the next

contact force is measured. The operations involved are described in Table 2.

For the numerical example previously analysed in which ∆t = 1 ms, Nc =545

792, Nn̄d
= 2, Nd = 9 and Nsd ranges from 0 to Nd. With these values,

that can be taken as usual, the operations involved in each time step need

about 0.15 ms to be performed, which confirms the real-time capability of the

proposed formulation and its potential use for HIL pantograph tests.
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Table 2: Operations performed in a given time step in the on-line stage.

Equation Description Operations

Eq. (34)

Contact point dis-

placement due to

contact force.

[ ]Nc×1 + ∆fc · [ ]Nc×1

Eq. (35)
Droppers elongation

due to contact force.
[ ]Nc·Nn̄d

·Nd×1 + ∆fc · [ ]Nc·Nn̄d
·Nd×1

Eq. (38) Dropper state. kd · [ ]Nc·Nn̄d
·Nd×1 < −fd0 d = 1, ..., Nd

Eq. (40)
Slackened droppers

correction force.
[ ]−1

Nsd×Nsd
· [ ]Nsd×1

Eq. (36)

Contact point dis-

placement due to

slackened droppers

correction force.

[ ]Nc×1 + [ ]Nc×Nsd
· ∆fd

Eq. (37)

Droppers elongation

due to slackened

droppers correction

force.

[ ]Nc·Nn̄d
·Nd×1 + [ ]Nc·Nn̄d

·Nd×Nsd
· ∆fd

7. Conclusions550

555

In this paper, we present a whole framework to perform HIL pantograph tests 

achieving the steady state of the pantograph-catenary dynamic interac-tion. The 

contribution of this paper is twofold: on the one hand we proposed the 

formulation to build an infinite periodic structure model, discretised by the FEM 

and subjected to a moving load travelling at constant velocity. The PFEM 

formulation is directly built from the common FE matrices that define the repet-

itive block of the system, so that it is valid for any generic periodic structure. The 

proposed formulation has been applied to compute the impulse response
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of a railway catenary PFEM to be subsequently used in HIL pantograph tests. 

On the other hand, an iterative strategy to achieve the steady state when the 

the catenary PFEM is used in HIL pantograph tests is proposed and numeri-

cally validated, even with the extension of the method in which the non-linear 

behaviour of droppers is also considered.

The main conclusions that can be drawn from this work are:

565

570

575

580

• From the FE model of a given infinite periodic structure repetitive block 

and applying periodic boundary conditions, it has been verified, by means 

of standard simulations with a very long FE catenary model, that the 

proposed catenary PFEM provides the precise steady-state response under 

a constant velocity moving load.

• The catenary PFEM requires very low computational cost which allows 

its implementation in HIL tests, in which real-time performance is manda-

tory. Even when the non-linear behaviour of droppers is included into the 

algorithm, it is still able to be solved in real time.

• Although it is unavoidable to manage a delay produced in the commu-

nication and execution of the control loop of the actuator, the proposed 

formulation has the advantage of being able of easily compensate this de-

lay since the response for a later time is available at the current time 

step.

• The proposed framework to perform HIL tests with the catenary PFEM 

only focuses on the steady-state response and therefore, other particular-

ities of the pantograph-catenary interaction such as contact wire irregu-

larities, uneven spans or overlaps can not be addressed.

585

Future work will lead to the implementation of the proposed method in a 

HIL test rig, in which the stability of the method needs to be checked in the 

presence of experimental issues such as noise, delays, limited measuring accu-

racy, vibrations and so on. Additionally, the catenary PFEM can be extended
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to consider the interaction with two pantographs offering the opportunity of 

studying the interference phenomenon between pantographs.
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Appendix A. Demonstrative example

In order to illustrate the method and facilitate the reproducibility of the 

numerical results, a HIL simulation is described in this appendix by using a 

linear small-size FE model. The procedure described in the paper is thoroughly 

followed and some numerical results are provided at each step.

1 2 3 4 5 6

1 2 3

TT

kc
z0kz

v

Figure A.11: Academic periodic FE model.

600

The infinite periodic model chosen is composed of a tensioned string period-

ically supported as shown in Fig. A.11. The repeated block consists of a piece of 

string modelled with two elements (3 nodes) and a spring-damper system on the 

right end. A given element of the string has two nodes and two degrees of 

freedom, the vertical displacement of each node. The dynamic equation of an
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element e with tension T , linear density µ and length Le is:

müe + kue = Fe (A.1)

605 in which the mass and stiffness matrices and the vector of degrees of freedom are:

m =
µLe

6





2 1

1 2



 ; k =
T

Le





1 −1

−1 1



 ; ue =





u1

u2



 (A.2)

The FE model of the whole block is obtained by assembling the two string 

elements and the spring-damper system, which results in:

M =
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; (A.3)
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; (A.4)

The numerical values of the parameters that define the model are shown in 

Table A.3. The time and frequency discretization is made with ∆t = 5 ms and ∆ω 

= 2π/(N∆t) rad/s, being N = 10000 and the number of harmonics Nf = 5969, 

which leads to a maximum frequency of ≈ 750 rad/s.

Table A.3: Parameters of the academic model.

T (N) µ(kg/m) Le(m) k(N/m) c(Ns/m) v(m/s)

22000 1.3 0.75 300 10 50

610

The dynamic stiffness matrix D(ωk) can be computed with Eq. (6) and, by 

using Eqs. (12) and (14), the Frequency Response Function H(ωk) is obtained 

considering that node 1 is the left node, node 2 is the inner node and node 3 is the 

right node. For each frequency ωk, H(ωk) is a matrix with two columns
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related to the excitation on the inner and the right nodes and three rows that 

match to the displacement of each of the three nodes. For example, the matrix 

H(ωk) for the frequency index k = 3000 (60 Hz) is:

H(ωk=3000) = 10−4











−0.1113 + 0.0845 i 0.0161 − 0.0532 i

0.0549 − 0.0074 i −0.1113 + 0.0845 i

−0.1147 − 0.0797 i 0.0555 − 0.0012 i











Additionally, the norm of the different elements in H(ωk) are depicted in Fig. A.12, 

in which |H12(ωk)| = |H32(ωk)| and |H11(ωk)| = |H22(ωk)| = |H31(ωk)| due to the 

properties of the receptance and the periodic boundary conditions.
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Figure A.12: Norm of the receptance H(ω).

The velocity of the moving load used in this example is v = 50 m/s. Ac-

cording to this value, the length of the block and ∆t, there are Nc = 6 different 

discrete contact points along the block as depicted in Fig. A.11. The dynamic 

behaviour of the PFEM with a moving load is collected in the operator I(n, n̂). 

This operator is obtained with the evaluation of the discrete impulse function 

defined in Eq. (19) for all the combinations of n ∈ [1, Nc] and n̂ ∈ [1, Nc] as
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625

stated in Eq. (22). As the continuous operator I(ω, x, y) appears in the discrete 

impulse function (Eq. (19)), it also must be evaluated for all combinations of n 

and n̂ considering that the observation point x is related to n and the excitation 

point y is related to n̂. Thus, I(ω, n, n̂) = I(ω, xn, yn̂) is computed for every 

frequency ωk, with 6 points of excitation and 6 points of observation, by means of 

Eq. (16).

To compute I(ω, n, n̂), the shape functions are arranged in a matrix that relates 

the forces of discrete points n̂ (rows) to the three degrees of freedom

(columns):

N =






















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1 0 0

0.6667 0.3333 0

0.3333 0.6667 0

0 1 0

0 0.6667 0.3333

0 0.3333 0.6667
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
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















(A.5)

The operator I(ω, n, n̂) is organised in a matrix I, referring the rows to n and 

the columns to n̂. For example, the values of this operator for the frequency 

defined by k = 3000 are:

Re(I(ωk=3000)) =

10−4 ·














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
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0.0555 −0.0001 −0.0557 −0.1113 −0.0688 −0.0264

−0.0012 −0.0195 −0.0377 −0.0559 −0.0461 −0.0362

−0.0580 −0.0388 −0.0197 −0.0005 −0.0233 −0.0461

−0.1147 −0.0582 −0.0016 0.0549 −0.0005 −0.0559

−0.0704 −0.0475 −0.0246 −0.0016 −0.0197 −0.0377

−0.0261 −0.0368 −0.0475 −0.0582 −0.0388 −0.0195


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












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






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Im(I(ωk=3000)) =

10−5 ·








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
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









0.0116 −0.2738 −0.5593 −0.8448 −0.3860 0.0728

0.2736 0.0028 −0.2679 −0.5387 −0.3348 −0.1310

0.5355 0.2795 0.0235 −0.2325 −0.2837 −0.3348

0.7975 0.5562 0.3149 0.0736 −0.2325 −0.5387

0.3568 0.3429 0.3289 0.3149 0.0235 −0.2679

−0.0838 0.1295 0.3429 0.5562 0.2795 0.0028


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




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















630

To show more information of this operator, the elements of the first column 

are plotted in Fig. A.13 for every frequency. In this case, |I51| = |I31| and |I61| = |

I21| due to the periodicity condition and the symmetry of the model.

Figure A.13: Harmonic response of discrete points of the block when the excitation

is applied on point number 1.

Finally, with Eq. (19) and Eq. (22), I(n, n̂) can be computed from I(ω, n, n̂).
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In this case, it results in:

I = 10−4














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











0.3804 0.3934 0.4126 0.3758 0.4676 0.4853

0.4853 0.3735 0.3778 0.4197 0.4216 0.4319

0.4676 0.4439 0.3676 0.3934 0.4029 0.4216

0.3758 0.4750 0.4902 0.3627 0.3934 0.4197

0.4126 0.4200 0.4437 0.4902 0.3676 0.3778

0.3934 0.3913 0.4200 0.4750 0.4439 0.3735


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
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


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Once the former operator is obtained, a simulation of a HIL test can be 

carried out. To simplify the process, the model in contact (which replaces the real 

pantograph) is a single spring as shown in Fig. A.11. This spring applies a vertical 

force fc on the contact point, which is proportional to the difference between the 

contact point height zc and a reference value z0, so that fc = kz(zc − z0). In this 

example we use a spring with stiffness kz = 10000 N/m and z0 = 5 mm.

Given a contact force fc, Eq. (25) provides the contact point height. In the 

first step of the simulation, the displacement of the contact point is initialised to 

0 and the contact force is therefore fc(1) = kzz0 = 50 N. By multiplying the first 

column of I(n, n̂) by this force, we obtain:

z1
c = 10−3 · [1.9022 2.4265 2.3380 1.8791 2.0630 1.9668] m

for all n ∈ [1, 6]. In the next step, the displacement of the contact point is

cz1(2) = 2.4265 · 10−3 m and the contact force is fc(2) = kz(z0 − 2.4265 · 10−3) =640

25.7351 N. This value is used to multiply the second column of I(n, n̂) and

c to compute z2
c , from which the third value z2

cthe result is added to z1 (3) =

3.4803 · 10−3 can be obtained for the next step.

In the 7-th step, the block number 2 starts and hereinafter, instead of using 

the force value fc(7), we use the increment respect to the force on the former 

block, fc(7) − fc(1), to multiply the first column of I(n, n̂). Following this 

procedure, the contact force obtained is shown in Fig. A.14. The contact force is 

finally repeated in every block as seen in the figure since the steady-state
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regime has been achieved. This periodic contact force is:

fc = [14.1319 14.2372 14.4190 14.1001 14.2078 14.4236] N

Figure A.14: Contact force in a simulated HIL test with the academic model.
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