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Abstract

In this paper, we propose a general approach to compute the dynamic response
of periodic infinite structures subjected to a moving load. The method only
considers one repetitive block of the structure which is modelled by the Finite
Element Method. The problem is first shifted to the frequency domain where
the periodicity condition is easily applied and then the temporal response is
obtained. An infinite periodic catenary system has been chosen to illustrate
the proposed formulation. The linear formulation is extended to include the
non-linear behaviour of droppers. The efficiency and accuracy of the catenary
model obtained makes it very suitable for use in Hardware in the Loop (HIL)
pantograph tests. We propose to combine this catenary model with an iterative
strategy to achieve the steady-state response of the coupled system and its
performance is analysed in a virtual HIL simulation.
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1. Introduction

1.1. Background

In the last decades, the expansion of electric railway systems has brought an
important increase in the number of investigations focused on pantograph-
catenary dynamic interaction. The proper sliding contact between both systems
is crucial to achieve higher velocities, to reduce the wear of the sliding interfaces
and to ensure a stable and safety operation. The pantograph is a mechanism that
is mounted on the roof of the locomotive, which keeps contact with the contact
wire of the catenary by pushing it up. This interaction has been studied by means
of different techniques as it is described in [1]. Essentially, the three main options
are: numerical simulations, hardware-in-the-loop (HIL) tests or hybrid
simulations and in-line testing.

Numerical simulations are widely used being the Finite Element Method
(FEM) the most chosen approach. A deep analysis of the results of a pantograph-
catenary interaction benchmark can be found in [2] and the references therein,
which included the participation of 10 international research groups. Hybrid
simulations or HIL tests are in the midway between numerical simulations and
in-line testing. They consist on splitting the whole system into two substruc-
tures, being one of them replaced by a numerical model while the other is phys-
ically present in the simulation. The interaction between both systems, namely
the virtual and the physical, is carried out by an interface made up by sensors
and actuators. An insightful review of hybrid simulations applied to different
systems can be found in [3]. This approach has also been applied successfully to
the pantograph-catenary system [4]. In this case, the pantograph is the physical
substructure and the catenary is replaced by a numerical model playing the role

of the virtual system.

1.2. Problem of interest

The implementation of HIL pantograph tests involves certain issues and

challenges. The catenary model must be solved in real time while keeping a
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high accuracy and there is usually a control-loop delay between the contact force
measurement time and the imposition to the pantograph collector of the
displacement computed from the catenary model. In order to solve these issues,
some authors proposed different degrees of simplification in the catenary model
used that compromise the accuracy of the results obtained. This work is aimed at
setting an entire framework that allows HIL testing with a high accuracy in the
catenary model.

As depicted in Fig. [1, a catenary section is composed of a succession of spans.
In its central region they use to be equal, which leads to a repetitive structure
that presents a steady-state response when interacting with the pantograph.
We choose the FEM to model the catenary and we assume the hypothesis of
periodicity that is representative of the most part of the catenary. Further-
more, to achieve realistic results, the non-linear behaviour of droppers must be
considered, which is also a challenge dealt with in this work.

However, if we consider a steady-state response it can present some disad-
vantages such as the inability to consider uneven spans, realistic contact wire
irregularities and overlaps between consecutive sections. The influence of these
phenomena was studied in [5,16], concluding that their effect is not the most
significant on the overall catenary dynamic response.

The procedure to implement a HIL test with a periodic catenary model
includes two clearly differentiated parts. The first stage consists on creating a
periodic catenary FEM model which reproduces the steady-state regime subject
to a constant velocity moving load. In the formulation proposed in this work,
only one span is discretised by the FEM and periodic boundary conditions are
applied on the ends of the model to avoid modelling the entire catenary. The
second stage is focused on defining a methodology to use the proposed periodic
model, which represents the steady-state response of the catenary, in a HIL
pantograph test, which unavoidably presents control-loop delays and an initial

transient regime.
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Figure 1: Main components of a railway catenary.

1.8. Literature review

In this subsection we present a literature review of the problem addressed
in this work, distinguishing the works related to periodic models subjected to
moving loads and the works that deal with HIL pantograph tests.

A broad overview of the dynamic response of structures under moving loads
can be found in [7]) in which the solution of different moving-load problems are
discussed from an analytical point of view. The study of this type of prob-lems
has gained interest in the analysis of the steady-state response of systems such as
rails, overhead contact lines or bridges. This problem has been tra-ditionally
addressed with analytic models based on a periodically supported infinite string/
beam [8-10]. These approaches have in common the considera-tion of a periodic
solution which allows considering only a repetitive block of the model between
two consecutive supports. Specifically, an infinite periodic Euler-Bernoulli beam
subjected to a uniform moving harmonic pressure field is used in [8] to simulate
the dynamic¢ behaviour of the rail. The differential equation is solved in the
domain defined between two supports to which appro-priate boundary
periodicity conditions are applied. A similar model is proposed in [9], in which a
modal representation results in a system of uncoupled differ-ential equations.
The limit of the solution of such a system when the number of blocks tends to
infinity is computed for a moving constant load. The same problem is also solved
in [10], applying the Fourier [Transform to shift to the frequency domain where
the periodicity condition is more easily formulated. The solution in the frequency

domain is moved back to the time domain by the Inverse Fourier Transform.
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The main limitation to the previous solutions is the simplicity of the model
used, with which it is not possible to model more complex structures. To this end,
some solutions are proposed in the literature. An extension of the approach given
in [10] is_presented in [11]L.tb solve a catenary model that includes two in-
terconnected strings. Two-and-a-half dimensional (2.5D) Finite Element models
appear as an alternative to solve infinite periodic structures with constant cross
section. This strategy is applied in [12],/ to model a rail. Fourier Transform with
respect to space and time is performed to solve the problem which allows the
application of the periodicity condition on the reactions of the supports in the
frequency domain. The same authors presented an improved model in [13] where
the dynamic interaction of multiple wheels with the periodic model is computed by
means of Fourier series decomposition of the contact force.

A more general method is the so-called Wave Finite Element Method (WFEM)
that is not only used to model infinite periodic structures, but also can be ap-plied
to finite periodic structures [14, 15]. WFEM is used in [16] to obtair the frequency
response function of a periodic infinite structure which is used to compute the
response of the system excited by a moving load. WFEM also allows to consider
structures with transition zones [15].

Regarding the HIL tests applied to the pantograph-catenary interaction, it can
be found in the literature several solutions that include different degrees of
simplification to carry out the tests. The first works that presented a pantograph
HIL test rig were [L7, 18]. They used a finite length linear catenary model based on
a truncated modal approach. Another HIL set-up was proposed in [19] with a
simple catenary model composed of three spans and a sliding window strategy.
This model was upgraded in [20]Jwith the consideration of dropper slackening and
in [21],lwith the incorporation of lateral movement to the test rig to simulate the
catenary stagger. A linear catenary model is used in [22| for HIL tests using 3D
Euler-Bernoulli beams discretised with finite differences based on a moving
coordinate formulation in combination with an absorbing boundary layer to
attenuate outgoing waves. Other appealing catenary model intended to perform

HIL pantograph tests was proposed in [23].1Tt is based on a modal truncation
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of a full FE model, which would allow to consider non-periodic features such as
overlaps or installations errors. However, the practical use of this model in HIL
tests is challenging due to the presence of control-loop delays that can make the

test unstable.

1.4. Scope and contributions of this study

This paper is aimed at: i) solving the steady-state interaction of constant
velocity moving loads with periodic structures modelled by the FEM and ii)
proposing an strategy to use that solution to perform HIL tests. The global
objective is to define a complete framework to perform high fidelity HIL panto-
graph tests dealing with the usual control-loop delay that appears in this type of
tests.

The Periodic Finite Element Model (PFEM) of the catenary proposed ac-
complishes the first aim of this work and overcomes some of the limitations of
other models found in the literature. The PFEM allows modelling more complex
structures than the analytical models [8+10, 10], multi-strings models [10,[11] and
2.5D FEM models [12, [13].| Furthermore, it is a general method that can be
applied to any periodic structure modelled by the FEM. WFEM [14] |15] can
provide a similar solution by means of the method proposed in [16], however,
when WFEM is applied to slender structures with long spatial period such as a
railway catenary, some numerical problems arise making its solution not usable
in practise. Additionally, control-loop delays can be easily handled with the
catenary PFEM unlike with full FE catenary models, in which the response of the
catenary in future steps is not known in advance.

The final proposed model results very suitable for its application in HIL tests
and provides more accurate results than other catenary models used for this
purpose. In [17, 18], the accuracy of the model is limited due to either the severe
modal truncation considered or the small length of the system modelled to fulfil
both memory requirements and real-time performance. Sliding window methods
[19-21] alsol focus on the steady-state response but the boundary con-ditions

imposed lead to not negligible errors. Even in [22], in which|/boundary
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layers are used to avoid undesirable effects on the ends of the model, the fidelity
of the results is compromised. The model proposed in this paper avoids these
boundary effects by considering periodic boundary conditions that lead to the
proper steady-state response. Additionally, it has the potential to compensate the
control-loop delay that appears in HIL tests. Unlike most models found in the
literature, other important contribution of this work relies on considering the
non-linear behaviour of droppers, which are not able to hold compressive forces.
This feature is essential to obtain high-fidelity results in HIL pantograph tests.
The second aim of this work is accomplished by adapting the iterative pro-
cedure proposed in [24] to the scenario of a periodic catenary model. This pro-
cedure allows both the virtual catenary and the physical pantograph to achieve

the steady-state regime in a HIL test.

1.5. Organisation of the paper

The paper is structured as follows. The case of study of this work is described
in Section @ In Section B, the impulse response of the catenary FE model with
periodicity conditions is computed by solving the problem in the frequency
domain. This impulse response is used in Section @ combined with an iterative
procedure to perform HIL pantograph tests. The model is enhanced in Section @
to include the non-linear behaviour of droppers and some numerical results to
verify the computational costs and the accuracy of the proposed model are
presented in Section @ A discussion and the main concluding remarks are given

in Section [7| Finally, a demonstrative example that facilitates the reproduction

of some numerical results is included in |[Appendix A,

2. Description of the case study

The formulation developed in this paper is general in the sense that it can be
applied to any periodic structure as long as it can be modelled by the FEM.
However, as the final goal of this study is to perform HIL pantograph tests, the

proposed formulation is applied to a railway catenary model along the paper.



175

180

185

190

195

200

As depicted in Fig. 1| a catenary is mainly composed of a contact wire, which
interacts with the pantograph and is held by the messenger wire through verti-cal
cables called droppers. The wiring is supported at regular intervals defining a
span between two consecutive supports. The parameters that define the cate-
nary and the pantograph models which are used to obtain the results presented in
Section @ can be found in [2]. Additionally, the pantograph-catenary dy-namic
interaction is solved according to the method proposed in [25] when full FE
simulations are required for comparison and validation purposes.

To obtain the PFEM proposed in this work it is only necessary to obtain
the FE model of the repeated block of the structure, in this case one span
of the catenary, to apply the formulation described in the following sections.
The resulting catenary PFEM is suitable to perform HIL pantograph tests in
which the contact force applied to the pantograph collectors is measured and the
displacement of the contact point obtained from the catenary PFEM is imposed
by means of an actuator. In this work, all the HIL environment is treated by
means of simulations, leaving for future work the application to real HIL tests.
To this end, the physical substructure (i.e. the pantograph) is also simulated

with a numerical model to evaluate the capabilities of the proposed method.

3. Impulse response of the catenary

In this section, we present a general method to obtain the impulse response
of an infinite periodic structure subject to a periodic load moving at constant
speed. To illustrate the method, a railway catenary has been chosen as shown
in Fig. @ As a periodic structure, the catenary is subdivided into consecutive
blocks b of length L, which are repeated infinitely in the longitudinal direction
e1. A 2D catenary is depicted in Fig.  in which each periodic block b is a single
span. In the case of a 3D catenary, the repetitive block would consist of two
spans, due to the stagger arrangement of the catenary wires. It is important to
note that, as opposed to applying moving window strategies, the accuracy of

the proposed method is not further improved by including more spans into the
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Figure 2: Catenary as a periodic infinite structure and Finite Element discretization

of block b= 0.

repetitive block.

The pantograph moves at a constant speed V' and the interaction with the
catenary will be indefinitely repeated at every block if one considers that the
stationary state is achieved. Therefore, the external contact force applied to the
catenary is a periodic moving load of period T'= L/V.

Under the hypothesis of periodic interaction, any force applied in a given
block b is actually applied sequentially in every block b € [—oo, oo] at the
same instant with respect to that in which the pantograph started to interact
with each block. It is possible to calculate the impulse response produced by a
sequence of unit impulses f°(y,,t), which are periodically applied in each block
b (only once per block) at points y, and at time ¢ = bT, as depicted in Fig. @

The sequence of unit impulses that defines the impulse response can be
defined as:

fPly,,t) = 6(t — bT) b= —00,...,00 (1)

in which ¢ is the Dirac function and they are applied to every block b at the
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global coordinate y, =y + bLe;.

Given a point y in the reference block b = 0, the sequence of infinite
unit impulses f°(y,t) produces the catenary displacement u(t,x,y) at point
x. In this case, this is the unit impulse response h(t,x,y) under periodic con-
ditions. Note that the coordinates of the excitation point are denoted by vector
Y = [y1,%2,y3] " whereas, the coordinates of the point at which the response is
measured are referred to as X = [z1, 29, 73]". Both the impulse excitation f°
and catenary displacement u can be defined in an arbitrary direction, which are
not explicitly indicated for simplification in the notation.

The stationary response of the catenary u, will be repeated in each block.

Thus, for a given point x, the periodicity condition reads as:
’U,(t7 X, y) = u(t - bT7 X + bLela y) (2)

which allows the description of the response of the entire catenary with that of a
single block, so that the response of the reference block b = 0 will be considered
herein after. If this reference block is discretised by the Finite Element Method
(FEM), the displacements of its Ngo¢ nodal degrees of freedom are denoted by
u(¢,y) or u(t,y) in which superscript 0 is deleted for simplicity in the notation.
The nodes of the FE mesh of the reference block can be divided into left (L)
and right (R) boundary nodes and inner (I) nodes as shown in Fig. 2

3.1. Frequency Response Function

The impulse response of the above described infinite periodic system will
be obtained by considering only the reference block |[8410] and imposing the
periodicity condition defined in Eq. (). Some authors have solved this problem
by applying the Floquet decomposition [26]. However, we followed the strategy
proposed in [10, [11], which is based on the movement of the problem to the
frequency domain in which the periodicity condition is more easily stated. Thus,
we first need to find the Frequency Response Function (FRF) that relates the

displacement of point x to a harmonic unit force of frequency w applied at point

y.

10
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Without loss of generality, in this work, the displacements of inner and right
boundary nodes, uy(t) and ugr(t) respectively, are chosen as the unknowns of
the problem. Displacements of the left boundary nodes ur, must fulfil Eq. (@),
that is:

ur(t) = ug(t +7) (3)

which after applying the Fourier Transform, it becomes:
Up(w) = e“TUg (w) (4)

being Uy, 1 r(w) the Fourier Transform of uy, y g (¢), respectively.

The nodal equivalent external force vector F can be divided into left, inner
and right nodal degrees of freedom, namely F,, F; and Fg, respectively. If the
degrees of freedom of left and right boundary nodes are properly defined (mesh
compatibility), Fr, and Fr are related through the following equation:

Fr, =e“TFg (5)

The FRF of the system can be found by solving the following problem for
every frequency:
Dw)U=F+R

(6)
D(w) = K +iwC — w*M

where M is the mass matrix, K the stiffness matrix and C the damping matrix
of the substructure contained in a single block. The reaction force vector R,
applied to the left and right boundary nodes R = [Ry, 0, Rg]', is also un-
known. Eq. (@) can be rearranged in left boundary, inner and right boundary

degrees of freedom:

Dy Dir Dir U, Fr, R.
Di, Dn Dir U; =gy Fr ¢+ 0 (7)
Drr Dgrr Dgr Ur Fr Rr

Considering again the periodicity condition and the action reaction principle,

the reaction force vector in the left and right boundary R, and Ry are related

11



RL _ _eleRR

Introducing Egs. @) and (@) to Eq. (@):

Dy Dir + e“TDy, BWTFR Ry,
T I
D Dir + ¢ Dy, = F; + 0 (9)
R
Fr Ry

Dri Dgr +¢“TDgy,

s and then using Eq. (), the unknowns can be rearranged to the left-hand side:

Dyi Dir + eiWTDLL ewTy U; 0 Tl
, Fy
Dnp Dwg+ GWTDIL 0 Ugr = I 0
, Fr
DRI DRR + CZUJTDRL —I RR 0 I
(10)

in which I denotes for the identity matrix. Problem (I0) can be solved as:

U;

. Fy
Ur ¢ =H(w) (11)
Fr
Rr
where:
1
Dy Digr + e“TDy;, evTI 0 Tl
H(w)= | Dy D +e“TDyy 0 I 0 (12)

0 I

Dg; Dgg +e“TDgr;, -1

Eq. (T can be rewritten in terms of the displacements of the block as:

Uy,

Fy
U; o =H(w) (13)
Fr
Ur
with
ei“"TI:IR(w)
Hw) = | Hw) (14)
I:IR(W)

20 in which Hi(w) and Hg(w) are the two first rows of H(w).

12
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3.2. Impulse response

Eq. ([I3)) relates nodal displacements with nodal forces of the entire block
by means of the FRF H(w). However, we are interested in the displacement
of point x produced by a unit harmonic force F, applied at point y in the
reference block. The FEM operator N(x) = [N (x), Ni(x), Ng(x)] is the
1 X Ngof matrix, composed of nodal shape functions that transforms nodal
displacements into point displacements in a given direction and can also be
used to transform point forces to nodal equivalent forces.

With this operator, the nodal equivalent forces relative to the unit force F,

can be written as:

Fr | _ Ni(y)" (15)
Fr Nr(y)" +e “"Np(y)"
in which the term e "7 Np,(y) " considers the nodal forces at the right boundary
of the reference block (b = 0) that would appear if the unit force was applied
on the next block (b =1). Note that this contribution is only active if the unit
force is applied on an element of the reference block that has some node on the
left boundary.
With the use of the operator N(x) applied to the right-hand side of Eq. (I3])
and including Eq. ({3, it is possible to compute the harmonic displacement of

point x when a unit harmonic force acts at y:

.
I(w,x,y) = N(x) H(w) Ni(y) (16)

Nr(y)" +e “TNy(y)"

As the structure is modelled with FEM, Eq. (I0) cannot be analytically
defined but is computed for a discrete number of frequencies V¢ with a frequency
increment Aw:

wr = kAw k=0,...,Nr—1 (17)

In addition, time ¢ is also discretised with a time increment At:

t, = nAt (18)

13
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Thus, applying the Inverse Discrete Fourier Transform to Eq. (), the impulse

response at time step t,, is obtained as:

Ny—1

h(tn,x,y) = Z arRe (I(wk, x,y) ei“”“"m) Aw (19)
k=0

being ar =2 if k#0or ap =1if £k =0.
It is important to remark that there is no relation between Aw and the
period T'. In practise, Aw has to be chosen little enough to obtain an accurate

time response and Nt is limited by At to avoid aliasing effects.

4. Hardware In the Loop test methodology with a linear catenary

model

The concept of Hardware In the Loop (HIL) tests applied to railway pan-
tographs consists of hybrid simulations with a virtual catenary model and a
physical pantograph (see Fig. [B]). In these tests, the catenary is replaced by an
actuator that interacts with a real pantograph and simulates the vertical move-
ment of the catenary contact point. The contact force measured in the test rig
is the input of the virtual catenary model which must supply the contact point

vertical position in real time.

Virtual Ze

Controller

catenary

Measured f,.

E<_

D/\'é .

Figure 3: Scheme of a HIL pantograph test.

Eq. (I9) condenses the linear behaviour of the periodic catenary under a
moving periodic load, so that non-linear effects such as dropper slackening are
not considered in this section. Thus, the general response can be obtained with

the load applied at the contact wire of a single block.

14
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The pantograph is virtually moving at a constant speed V and applies a
vertical excitation over the contact wire of the catenary model. At is chosen so
that the contact wire of a periodic block of length L is divided in N, virtual

contact points y., (tn) withn =0,...,N. — 1.

Figure 4: Pantograph interaction with the periodic catenary.

If the contact force f.(t,) applied to a virtual contact point y,,,(¢,) is as-
sumed to be known, Eq. (I9) can be particularised to compute the vertical
displacement u(t,,x) of a given point x, by applying the superposition princi-

ple as the sum of the contribution of each force applied on the block:

N.—1
U(tn,X) = Z h(tn - tﬁ7X7YCW(t'fL)) fC(t'fz)At (20)

Note that 7o denotes the time instant at which the force is applied and n, the
instant at which the displacement is evaluated. It should also be noted that the
origin of time in the impulse response function (Eq. (I9)) corresponds to the
instant at which the impulse is applied. However, in Eq. 20)), ¢, = 0 which is
the time step at which the force is applied at the beginning of the block. This
is the reason why the impulse function is evaluated at t,, — t5.

For the pantograph interaction, we are interested in the displacement of the

contact point u¢(t,) = u(ty, Xew(tn)). Therefore, Eq. (20)) can be evaluated at

15
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this point as:

Ne—1
Ue(tn) = ultn, Xew(tn)) = Z I(n,n) fe(ta) (21)
n=0
in which:
]I(n,ﬁ) = h(tn - tﬁ7XCW(tn)7wa(tﬁ))At (22)

In addition to the displacement due to interaction with the pantograph,
the vertical position of the contact wire depends on the static configuration
of the catenary. If z.w(t,) is the contact wire height at the initial catenary
configuration, the global height of the contact point at time step n can be

obtained, as shown in Fig. @, from:

Zc(tn) = ch(tn) + Uc (tn) (23)

Eq. (2I) condenses in a N. x N. matrix I(n,n) the steady-state vertical
displacement of the contact point at time ¢, as a function of the stationary
force applied in all contact points of the block at time t; for n = 0,..., N, — 1.
It is important to note that when the force is measured and applied at a given
time step n € 7, the response for all the time steps n is affected.

Matrix I(n,7) can be precomputed making the proposed model very suit-
able for use in HIL testing because few operations are required to obtain the
contact point response. We propose to apply this model in combination with
an algorithm in which the measured contact force is iteratively updated until
the steady-state response is achieved.

Defining k as the global counter of each step or iteration of the HIL test, at
the beginning of the test (k = 0), a set of N, (the number of contact points in a
block) null values of the contact force are considered, so that z.(t,) = zew(tn)-
At a given iteration k, the contact force is measured at time step n relative to
the beginning of the current block b. In this step, only the contact force values
measured from tg to t5 are available in the current block. To complete the set of
N, measures of contact force required to compute the response of the catenary

model, the contact force values from t;41 to tn,_1 are taken from the previous

16
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block b — 1. Thus, by combining Egs. 23] and (2I]) the contact point height in

iteration k is computed as:

n N.—1
() = zewltn) + ST, 2) f2t) + 3 T d) 27N E)  (24)
n=0 n=n-+1

Note that the response z.(t,), defined from tg to ty__1, must be updated for all

t, every iteration k.

i Current block Previous block i

k-1 nfl0|1 23 ]4]5 coo N1

+ fo(ta)

Current force value n

Figure 5: Modification of the set of N. force values by replacing fo= (tz) by fo(ta)

at two consecutive iterations.

Eq. [24) can be rewritten based on the difference of the measured contact
force of the current block and that of the same instant of the previous block.
That is:

() = 257 (t) + 1(n, ) (f2(tm) — S22 (1) (25)

This strategy is schematically illustrated at Fig.

Once the contact wire height is available, only the vertical position of the
contact point for the next time step z¥(ts41) is sent to the actuator. The
method runs iteratively step by step until the measured contact force in two
consecutive blocks matches with a given tolerance.

The methodology explained so far is exemplified in by means of a
very simple academic model that allows the numerical results to be better

understood and reproduced.

17
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5. Hardware in the loop method with nonlinear catenary model

The HIL procedure explained in Section M is now extended to include the
non-linear behaviour of droppers. We use the same idea introduced in [25]
but adapted to account for the periodic nature of the system. The proposed
formulation is developed in two stages. In the first, the response is computed
with assumption to the linear model described in Section @l The second is

devoted to apply correction forces to the slackened droppers.

5.1. Dropper correction forces

The static equilibrium problem in a catenary system is a non-linear prob-
lem governed by large displacements. However, the dynamic behaviour can be
linearised around the static equilibrium position in which each dropper d has
a tension value fj9 and a stiffness k4 in the dropper direction. Droppers are
cables that cannot exert compression forces. However, these compression forces
are considered in the linear catenary model in which the tension of dropper d
is computed as f = kqAL, (dashed line in Fig. [B(a)). To satisfy the condition
of no compression forces, the internal force of a dropper must be greater than
-fao (continuous line in Fig.[Bl(a)). Thus, a correction force f; must be applied
to correct the linear behaviour as shown in Fig. [6(a). This consists of two com-

pression forces applied at both ends of the dropper y ;s and y , 4, as depicted

in Fig. BI(b).

f
Sk | #
1 Yd,sup
|t ALg Yd,inf
fa| .7
R de
(a) (b)

Figure 6: (a) Non-linear behaviour of droppers. (b) Correction forces fq applied on

dropper d.
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5.2. Unitary operators

In this subsection, we attempt to explain the influence which a periodic
sequence of unitary impulses applied on contact points and dropper ends has
on the displacement of these points.

We first define the dropper elongation AL, as:
ALd = u(xd,sup) - U(Xd,inf) (26)

I(n,n) in Eq. 2]]) can be redefined as IS(n,7) in which the subscript ¢ denotes
that the excitation is produced by the contact force and the superscript ¢ indi-
cates that the response is evaluated at the contact point. With this notation,
the displacement of the contact point produced by the contact force defined in
Eq. 1)) is now renamed:

N.—1

ug(tn) = Y Ii(n,n) fe(ta) (27)

A=0
Superscript 1 is used to point out the fact that this displacement is considered
the linear part of the total response.
Dropper elongation due to the contact force is:

N.—1

ALy(tn) = Y T(n, 1) fe(ts) (28)

n=0

in which:
I¢(n,7) = [A(tn — ta, Xd.sup: Yew (ta)) = htn — ta, Xdint, Yew (ta))] At (29)

To include the influence of dropper correction forces in the catenary response,
we first assume that the dropper correction force f4(t,) of dropper d at ¢, is
known. It is important to remark that the correction of the infinite droppers of
the catenary model at all time steps should be considered because they affect
the response on the contact point at time step n. In practise however, dropper
correction will not be considered in time instants at which the pantograph is far
enough from the reference block because it is highly improbable that a dropper

slackens and in such a case, its influence on the pantograph interaction has been

19



410

415

420

425

proven to be negligible. Thus, dropper correction is active only at time instants
from t_,, to t,,.

The displacement produced on the contact point due to dropper correction
forces is called the non-linear part of the response (denoted by superscript nl)

and is defined as:

ugl(tn) = IG(n, ) fa(ta) (30)
in which Ny is the number of droppers of the reference block and

Ig(n,n) = [h(tn — th, Xew(tn), yd,inf) — h(tn — th, Xew(tn), Yd,sup)] At (31)

Dropper d elongation caused by the correction forces applied to dropper d

are computed from:

Ny n
ALMt,) = Y T4(n,n) fi(ta) (32)

d=17n=—np

]ch{(n, ﬁ) = {h(tn —ta, Xd,sups y(i,inf) — h(tn —ta, Xd,sup) y(i,sup):| At

- |:h(tn - tﬁ; Xd,inf yiinf) - h(tn - tﬁ; Xd,inf, yci,sup):| At (33)

The total response can be obtained by adding the linear (1) and non-linear (nl)

contributions defined above.

5.83. HIL with dropper correction forces

The same procedure as that defined in Section Ml is used here but now,
dropper correction forces are added to the system. It is important to highlight
that dropper correction forces can be applied at instants before and after the
time instants at which the pantograph stays within the domain of the block (¢
for n =0,..., N. — 1).

At a given iteration k, the first step consists of updating the response due

to the contact force measured at t; as in Eq. ([25):
ugh(tn) = ug () + L(n, 1) (f2(ta) — £ (tn)) (34)
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In this case, it is also necessary to update the elongation of droppers due to this

contact force:
AL (ta) = AL (tn) + T (n,0) (£2(ta) = £ (t)) (35)

The second stage consists of modifying the response according to the effect of
dropper correction forces. Note that the dropper corrections forces f;(¢) are
applied at time instants ¢5 for i = —ny, ..., n, (a bigger interval than [0, N, —1]).
Thus, at every iteration k, f; must be calculated in several instants in order
to include all the instants from —ny to n,. For example, if —n, = —N, and
n, = 2N.—1, which means that dropper correction is active since the pantograph
gets into the previous block (b = —1) until the pantograph gets off the next block
(b=1), fq must be computed and applied at three instants of time, namely ¢z,
ta—n, and tatn, .

The effect of dropper correction forces modifies the linear response defined

in Egs. (34)) and (33) so that:

ug (tn) = ug"(ta) + Y D Ta(n,0) (£5(ta) — f37" (ta)) (36)

Ng
ALG(t) = ALY () + 30 - T a) (£ita) = 571 0))  (37)

d=171=7q
in which nq considers all the instants included into [—ny, n,] that are spaced
N, steps from the current measuring time n. For the choice of —ny, and n,
indicated above, nq = [n,7 — N.,n + N¢|. This is equivalent to applying this
correction to the droppers of the previous and next blocks at the current instant
ti.

At this point, the dropper correction forces ffj’(tﬁ ;) are the only magnitudes
left to calculate to know the response at iteration k. First, we must find out
the droppers to which the correction must be applied. To this end, the dropper
state @’j defines the slackening state of dropper d, being equal to 0 if the dropper
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is tensed and 1 if it is slackened. At time nq, it reads:

0 i kg AL (tn,) > —fao

Oj(ta,) = , C (38)
1 if kd ALd (tﬁd) < *fd()
in which AL}i’k(tﬁ ) is obtained from Eq. (33).
As shown in Fig. [Bl(a), the dropper correction force can be written as:
f(li)(tﬁd) = GS(tﬁd) (_de - deLZ(tﬁd)) (39)

According to Eq. (37)), the previous equation becomes:
ﬁum)=©ﬂmn<—ﬁm—m(AQng+

S W) (£ - 127 10) )) (40)

d=17="a
This is a system of Ng x Np, linear equations that allows to calculate the
dropper correction forces f4(ts,). Note that Ny, is the number of time steps
included in ngq and the system is in practice reduced since some of the equations
become f4(ts,) = 0 because dropper correction is not active in dropper d at
some instants considered in nq.

The final response at iteration k, including dropper correction, is calculated
with Egs. (36) and (37). Dropper state can change once the correction is applied
but it is not necessary to recalculate it. If the convergence is achieved after
several blocks, the difference between the response in two consecutive blocks

tends to zero and the stationary dropper state is achieved.

6. Numerical results

In this section, the algorithm proposed is tested in a virtual HIL simulation
in which a numerical pantograph model is used to replace the real pantograph
used in a standard HIL test. The time integration of the pantograph model is
carried out independently of the catenary model by means of the Hilber-Hughes-

Taylor (HHT) integration method [27]. In this virtual test, the displacement of
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the catenary contact point obtained from Eq. ([B8) is imposed on the pantograph
model and the contact force in the next time step is computed. Unlike in a real
HIL test in which this force would be measured by load cells, in the simulated
test, a penalty stiffness is used [2].

To validate the method, the results obtained in the virtual HIL test are
compared with a FEM conventional simulation. It is noteworthy to mention
that the virtual HIL test assumes an infinite periodic catenary while the size
of conventional FEM model is limited by the number of degrees of freedom.
However, we have made a long enough catenary section so that the steady-
state regime can be assumed on its central spans. In this way, transient effects
are negligible due to the notable length of the FEM catenary model and it
is expected to obtain the same solution in both the proposed periodic model
(PFEM), and the finite length FEM model.

Specifically, in this example, we chose the catenary model used in the bench-
mark exercise [2] with spans (or blocks) of 55 m in length having 9 droppers
and 55 mm of pre-sag in the contact wire each of them. A Rayleigh damping
model is used with C = SK 4 yM, being 8 = 107* s and v = 1.25 - 1072 s71.
For the pantograph, a lumped mass model with 3 vertical degrees of freedom is
used whose parameters are provided in Table [l The penalty stiffness used in

the contact model is kj, = 50000 N/m according to |2].

Table 1: Parameters of the pantograph model.

d.of. m(kg) ¢(Ns/m) k(N/m)

1 6.6 0 7000
2 5.8 0 14100
3 5.8 70 80

In the PFEM, the catenary impulse responses have to be computed for a
discrete number of frequencies (see Eq. ([IT)). We have found that Aw = 0.025

rad/s with a maximum frequency wi,q., = 750 rad/s are accurate enough values.
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Note that the frequency resolution Aw must be small enough to guarantee a
large period 27/Aw of the functions to which the DFT is applied. In turn, the
maximum frequency involved in the IDFT must be high enough to provide a
fine time discretisation of the nodal forces. The time resolution is chosen to
At =1 ms, a value which is smaller than 7 /w4, to avoid aliasing effects. This
value is also used for time integration of the pantograph model, although in this
case, a smaller value could be used.

In the numerical case analysed in this section, the velocity of the pantograph
is set at 250 km/h and the virtual HIL simulation runs until there is not notice-
able differences in the computed contact force of two consecutive blocks. To ease
convergence of the virtual HIL test, during the first 20 s of the simulation, the
displacement of the catenary contact point that is imposed on the pantograph
model is scaled by a factor that increases linearly from 0 to 1. This is reflected
in the increasing values in the first blocks of the results shown in this example

(see Fig. [Mand Fig. B).

Figure 7: Contact force evolution.
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Figure 8: Dropper correction forces evolution.

The contact force obtained in successive blocks of the virtual test is depicted
in Fig. [ in which only one in three curves are shown for a better visualisation
of the figure. The non-linear correction forces of droppers 2 to 8 (Eq. (39])) can
be seen in Fig. [§ from left to right and again one in three curves are displayed.
Note that the first and last droppers do not present any correction force since
they do not slacken due to their greater initial tensile force caused by the pre-
sag of the contact wire. The two black dashed lines show the times in which
the pantograph is placed inside the reference block from ¢ = 0 to ¢t = 0.792 s.
However, dropper correction forces are also computed outside this period but
they are null in this example. Specifically, the period in which dropper correction
is active covers two blocks, from step —n; = 80 to n, = 1504.

As seen in both figures, convergence is properly achieved, although it is
important to mention that some convergence issues can arise if the periodic
structure is very low damped. Thus, a certain amount of damping is required
to guarantee the convergence of the proposed approach.

In order to validate the results, the converged contact force obtained from the
catenary PFEM is compared in Fig. @ with the contact force of three consecutive
central blocks computed with a conventional FEM simulation. We have used
two catenary models with different length, namely 15 and 30 spans respectively.

The FEM solutions show minor differences with the contact force obtained from
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Figure 9: Comparison

of contact force of catenary PFEM (solid line) with those

obtained in three central spans of the section of a FE catenary model with 15 spans

(dashed line) and 30 spans (dash-dotted line).

the PFEM. These differences are even smaller with the 30-spans FE catenary

model because a more stationary response is achieved on these central spans.

The converged dropper correction forces obtained from the catenary PFEM

are also compared with those obtained from the longest FE catenary model in

Fig. As can be seen in both figures, the results provided by the proposed

catenary PFEM are validated according to their great similarities with those

obtained from a FEM simulation with a large enough catenary model.
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Figure 10: Comparison of dropper correction forces from catenary PFEM (solid lines)
with those obtained in a central span of a FE catenary model with 30 spans (dashed

lines).

Regarding the computational cost required to obtain the PFEM solution, a
distinction must be made between the off-line and on-line stages. The former
takes a relatively long computation time which mainly includes the FRF of the
catenary periodic block and the unitary impulse response functions. Specifically,
for the example previously analysed, it takes approximately 30 minutes in a
conventional computer.

The on-line stage covers the computations that must fulfil real-time perfor-
mance to perform HIL tests. For a given time-step t,, the measured contact
force is taken as input and the contact point height must be given before the next
contact force is measured. The operations involved are described in Table [2.

For the numerical example previously analysed in which At = 1 ms, N, =
792, Np, = 2, Ng = 9 and N, ranges from 0 to Ng. With these values,
that can be taken as usual, the operations involved in each time step need
about 0.15 ms to be performed, which confirms the real-time capability of the

proposed formulation and its potential use for HIL pantograph tests.
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Table 2: Operations performed in a given time step in the on-line stage.

Equation Description Operations

Contact point dis-
Eq. B4) placement due to [ Ivox1 +Afe [ Inv.x1

contact force.

Droppers  elongation

Eq. B5) [ NNy Nax1t + Afe [ INeNa, Nax1
due to contact force.

Eq.

g

Dropper state. kq-[ ]Nc'Nﬁd'NdX1 < —fao d=1,....Ng4

Slackened droppers

Eq. @) . [N s o [ INeaxa
correction force.

Contact point dis-
placement due to

Eq. (B6) [ INext + [ INexneg - Afa
slackened droppers

correction force.

Droppers  elongation
due to slackened

Eq. (37) , [ INeNay - Nax1 + [ INeNay - NaxNea - Dfa
droppers correction

force.

7. Conclusions

In this paper, we present a whole framework to perform HIL pantograph tests
achieving the steady state of the pantograph-catenary dynamic interac-tion. The
contribution of this paper is twofold: on the one hand we proposed the
formulation to build an infinite periodic structure model, discretised by the FEM
and subjected to a moving load travelling at constant velocity. The PFEM
formulation is directly built from the common FE matrices that define the repet-
itive block of the system, so that it is valid for any generic periodic structure. The

proposed formulation has been applied to compute the impulse response
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of a railway catenary PFEM to be subsequently used in HIL pantograph tests.
On the other hand, an iterative strategy to achieve the steady state when the
the catenary PFEM is used in HIL pantograph tests is proposed and numeri-
cally validated, even with the extension of the method in which the non-linear
behaviour of droppers is also considered.

The main conclusions that can be drawn from this work are:

¢ From the FE model of a given infinite periodic structure repetitive block

and applying periodic boundary conditions, it has been verified, by means
of standard simulations with a very long FE catenary model, that the
proposed catenary PFEM provides the precise steady-state response under

a constant velocity moving load.

The catenary PFEM requires very low computational cost which allows
its implementation in HIL tests, in which real-time performance is manda-
tory. Even when the non-linear behaviour of droppers is included into the

algorithm, it is still able to be solved in real time.

Although it is unavoidable to manage a delay produced in the commu-
nication and execution of the control loop of the actuator, the proposed
formulation has the advantage of being able of easily compensate this de-
lay since the response for a later time is available at the current time

step.

The proposed framework to perform HIL tests with the catenary PFEM
only focuses on the steady-state response and therefore, other particular-
ities of the pantograph-catenary interaction such as contact wire irregu-

larities, uneven spans or overlaps can not be addressed.

Future work will lead to the implementation of the proposed method in a
HIL test rig, in which the stability of the method needs to be checked in the
presence of experimental issues such as noise, delays, limited measuring accu-

racy, vibrations and so on. Additionally, the catenary PFEM can be extended
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to consider the interaction with two pantographs offering the opportunity of

studying the interference phenomenon between pantographs.
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Appendix A. Demonstrative example

In order to illustrate the method and facilitate the reproducibility of the
numerical results, a HIL simulation is described in this appendix by using a
linear small-size FE model. The procedure described in the paper is thoroughly

followed and some numerical results are provided at each step.

Figure A.11: Academic periodic FE model.

The infinite periodic model chosen is composed of a tensioned string period-
ically supported as shown in Fig. The repeated block consists of a piece of
string modelled with two elements (3 nodes) and a spring-damper system on the
right end. A given element of the string has two nodes and two degrees of

freedom, the vertical displacement of each node. The dynamic equation of an
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element e with tension 7', linear density p and length L. is:
mii® + ku® = F° (A1)

s in which the mass and stiffness matrices and the vector of degrees of freedom are:

k

L 2 1 T 1 -1 U
m = K> ; = — : ¢ ! (A.2)
6 L
1 2 e | =1 1 Ug

The FE model of the whole block is obtained by assembling the two string

elements and the spring-damper system, which results in:

pLle  pLe
3 5 0 00 0
pLe  puLe pLe
M = 2 ; C= ; A3
G 3 5 0 0 0 (A.3)
o Hle ple 00 c
6 3
T T
- = 0
L’T IT T ul
Le [iq TLe 3 u9 ) ( )
0 —— —+k us
L. L.

The numerical values of the parameters that define the model are shown in

Table The time and frequency discretization is made with At = 5 ms and Aw
= 21/(NAt) rad/s, being N = 10000 and the number of harmonics Ny = 5969,

which leads to a maximum frequency of ~ 750 rad/s.

Table A.3: Parameters of the academic model.

T(N) p(kg/m) Lo(m) k(N/m) c(Ns/m) o(m/s)

22000 1.3 0.75 300 10 50
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The dynamic stiffness matrix D(wy) can be computed with Eq. and, by
using Egs. and , the Frequency Response Function H(wy) is obtained

considering that node 1 is the left node, node 2 is the inner node and node 3 is the

right node. For each frequency wy, H(wy) is a matrix with two columns
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related to the excitation on the inner and the right nodes and three rows that
match to the displacement of each of the three nodes. For example, the matrix

H (wy) for the frequency index k = 3000 (60 Hz) is:

—0.1113 +0.08451 0.0161 — 0.0532 i
H(wr=3000) = 107" | 0.0549 — 0.0074 1  —0.1113 + 0.0845 i
—0.1147 — 0.0797 1  0.0555 — 0.0012 i
Additionally, the norm of the different elements in H(wy) are depicted in Fig.
in which |[Hyo(wg)| = |Hsa(wk)| and [Hy1(wg)| = [Hao(wg)| = [Hs1(wg)| due to the

properties of the receptance and the periodic boundary conditions.

—— Hx
" —— Hz
1074L u b Hjs |
| ;‘1‘
E -
—10°6¢ 1
10°8L 4

0 100 200 300 400 500 600 700
wlrad/s]

Figure A.12: Norm of the receptance H (w).

The velocity of the moving load used in this example is v = 50 m/s. Ac-
cording to this value, the length of the block and At, there are N, = 6 different
discrete contact points along the block as depicted in Fig. The dynamic
behaviour of the PFEM with a moving load is collected in the operator I(n, 7).

This operator is obtained with the evaluation of the discrete impulse function

defined in Eq. for all the combinations of n € [1, NJ and 72 € [1, N,] as
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e0 stated in Eq. . As the continuous operator I(w, X, y) appears in the discrete
impulse function (Eq. ), it also must be evaluated for all combinations of n
and 7 considering that the observation point x is related to n and the excitation
point y is related to #. Thus, I(w, n, 7) = I(w, X,, ¥,) is computed for every
frequency wg, with 6 points of excitation and 6 points of observation, by means of

o5 EQ. .
To compute I (w, n, 72), the shape functions are arranged in a matrix that relates
the forces of discrete points 7 (rows) to the three degrees of freedom

(columns):
1 0

0
0.6667 0.3333 0
0.3333 0.6667 0

0 1 0

0 0.6667 0.3333

0 0.3333 0.6667 |

The operator I(w, n, f2) is organised in a matrix I, referring the rows to n and
the columns to 7i. For example, the values of this operator for the frequency

defined by k£ = 3000 are:

Re(I(wr=3000)) =

0.0555 —0.0001 -0.0557 —0.1113 —0.0688 —0.0264
—0.0012 —-0.0195 —0.0377 —0.0559 —0.0461 —0.0362
—0.0580 —0.0388 —0.0197 —0.0005 —0.0233 —0.0461
—0.1147 —0.0582 —0.0016 0.0549 —0.0005 —0.0559
—-0.0704 —0.0475 -—0.0246 -—0.0016 -0.0197 —0.0377
—0.0261 —0.0368 —0.0475 —0.0582 —0.0388 —0.0195

1074
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Im(I(wx=3000)) =

[ 0.0116
0.2736
0.5355
0.7975

0.3568

107°.

—0.0838

To show more information of this operator, the elements of the first column

s are plotted in Fig. for every frequency. In this case, |Is1| = |I31| and |Is1| = |

—0.2738
0.0028
0.2795
0.5562
0.3429
0.1295

—0.5593
—0.2679

0.0235
0.3149
0.3289
0.3429

—0.8448 —0.3860  0.0728
—0.5387 —0.3348 —0.1310
—0.2325 —0.2837 —0.3348
0.0736  —0.2325 —0.5387
0.3149  0.0235 —0.2679
0.5562 0.2795 0.0028

I51| due to the periodicity condition and the symmetry of the model.

0 100

Figure A.13: Harmonic response of discrete points of the block when the excitation

200

is applied on point number 1.

Finally, with Eq. and Eq. , I(n, 7) can be computed from I(w, n, 7).

300 400
wlrad/s]
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In this case, it results in:

i 0.3804 0.3934 0.4126 0.3758 0.4676 0.4853
0.4853 0.3735 0.3778 0.4197 0.4216 0.4319
0.4676 0.4439 0.3676 0.3934 0.4029 0.4216
0.3758 0.4750 0.4902 0.3627 0.3934 0.4197
0.4126 0.4200 0.4437 0.4902 0.3676 0.3778
0.3934 0.3913 0.4200 0.4750 0.4439 0.3735

Once the former operator is obtained, a simulation of a HIL test can be
carried out. To simplify the process, the model in contact (which replaces the real
pantograph) is a single spring as shown in Fig. This spring applies a vertical
force f.on the contact point, which is proportional to the difference between the
contact point height z. and a reference value zg, so that f. = k,(z. — 2¢). In this
example we use a spring with stiffness k., = 10000 N/m and zp = 5 mm.

Given a contact force f., Eq. provides the contact point height. In the
first step of the simulation, the displacement of the contact point is initialised to
0 and the contact force is therefore f.(1) = k,zo = 50 N. By multiplying the first

column of I(n, 1) by this force, we obtain:

z} =1073-[1.9022 2.4265 2.3380 1.8791 2.0630 1.9668] m

for all n € [1, 6]. In the next step, the displacement of the contact point is

24(2) =2.4265 - 10~3m and the contact force is f.(2) = k. (2o — 2.4265 - 10-3) =

25.7351 N. This value is used to multiply the second column of I(n, #2) and
the result is added to z! to compute 22, from which the third value 23(3) =
3.4803 - 103 can be obtained for the next step.

In the 7-th step, the block number 2 starts and hereinafter, instead of using
the force value f.(7), we use the increment respect to the force on the former
block, f.(7) — f.(1), to multiply the first column of I(n, 7). Following this
procedure, the contact force obtained is shown in Fig. The contact force is

finally repeated in every block as seen in the figure since the steady-state
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regime has been achieved. This periodic contact force is:

fe=1[14.1319 14.2372 14.4190 14.1001 14.2078 14.4236] N

50 ' ' ' ]

Figure A.14: Contact force in a simulated HIL test with the academic model.
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