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Abstract

The pantograph-catenary dynamic interaction problem is addressed by Hardware-

in-the-Loop (HIL) tests to simulate the dynamic interaction between a numerical

model (the catenary) and a physical device (the pantograph). The real-time sim-

ulation requires a computationally efficient numerical model and an on time and

accurate transference of the response to the pantograph, for which a Periodic

Finite Element Model (PFEM) of the catenary is considered. Firstly because

of the acceptable computation time required to solve it, makes it suitable for

real-time simulations and, secondly, its ability to allow for the delay caused by

the transfer of the numerical model response.

The catenary PFEM we used considers the non-linear behaviour of the drop-

per slackening, leading to highly accurate HIL test results, which were validated

up to a frequency of 25 Hz.

Keywords: Hardware-In-the-Loop, Hybrid Simulation, Pantograph, Control,

Periodic Catenary

1. Introduction

The current research on railway engineering, is now involved in multiple

problems, one of which is the pantograph-catenary dynamic interaction problem.
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It is an established fact that, although there is still room for improvement, the

performance of the pantograph-catenary couple limits the rolling stock speed.5

This is due to the apparent dynamic complexity of the system and the gap be-

tween the models and reality that hinders any attempt at improvement. This

gap refers to the difficulty of reproducing experimental measurements by nu-

merical simulations.

One of the solutions proposed to reduce the gap is the so-called Hardware-10

in-the-Loop (HIL) tests, also known as hybrid simulations (HS). These tests are

used in multiple fields [1] and researchers have made great efforts to expand HIL

boundaries. In the pantograph-catenary field, HIL tests consist of a pantograph

loaded by an actuator that simulates the catenary response obtained from nu-

merical simulations and can be considered midway between in-line experimental15

tests and pure numerical simulations.

Even though the use of HIL simulations is an appealing approach to avoid

expensive in-line tests, their implementation presents certain challenges. HIL

tests require very efficient models, advanced equipment and demanding elec-

tronic performance. One of the main requirements of HIL pantograph tests is20

thus a low computational cost of the catenary model as it needs to be integrated

at a rate of 2 ms or less, which is high, considering the many degrees of free-

dom requiered of a catenary model to obtain accurate results. Another essential

requirement is a short control loop delay to prevent an unstable response. To

solve these two big problems, different efficient catenary models and techniques25

to mitigate the effect of the delay can be found in the literature.

The modal-truncated approach is used in [2, 3] to reduce the size of simpli-

fied catenary models as regards the computational cost. The same approach is

also used in [4] but applied to a non-linear finite element catenary model. An-

other alternative is the sliding window method, which was first used in [5] with30

a simple catenary model composed of three spans. This model was upgraded

in [6] by the inclusion of non-linear dropper slackening behaviour. In [7] a cate-

nary model based on a moving mesh formulation in combination with absorbing

boundary layers was used to perform catenary time integration in real-time. All
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these finite-length catenary models lead to a stationary response that is affected35

by the boundary conditions assumed.

Although the previously described catenary models can be computed in real-

time, their response has to be faithfully transferred to the physical device, and

the presence of a delay prevents this. Some solutions have been proposed to

address the negative effects of delays. In [8], the HIL technique is applied to40

the vehicle-bridge interaction and the work aims to compensate the HIL delay

by using a recursive prediction optimal (RPO) compensator. This method has

been shown to have better performance than other strategies such as polynomial

extrapolation [9], inverse compensation [10] or differential feedforward [11]. The

interaction between a real pantograph and a virtual catenary is dealt with in [12,45

13]. This type of simulation is called a Dynamically Substructured System

(DSS) as the interaction is conducted in a different way to that used in HIL.

According to the authors, the HIL or HS labels are used when the interaction

between the virtual and psysical substructure follows an open-loop strategy. In

the HIL strategy, transferring the response of the virtual to the physical model50

therefore has to be ideal, implying rigorous requirements. On the other hand,

DSS provides an interaction between the models by means of a closed loop

in which the response of the virtual model is compared to the current status

of the physical device and a control action is included. In [12], the control

system is developed via Linear Sub-structuring Control (LSC) to perform DSS55

by a very elementary catenary model with one degree of freedom and variable

stiffness. Experimental results can be achieved by replacing the pantograph

with a shock absorber, which is good for the control field but is still far from

accurate in representing the pantograph-catenary dynamic interaction. This

approach was continued in [13] by applying a sliding window approach to model60

the catenary, but the test was performed with the same simplified pantograph

model. The results obtained were compared with simulations but were seen to

be significantly inaccurate. In [14], the DSS strategy was then tested with a real

pantograph and the accuracy of the results was challenged. According to this

terminology, the work conducted in [7] could be described as DSS, since they65
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also developed a control algorithm based on the energy equation to limit the

error in the controlled position of the catenary to avoid the instability produced

by delays.

In the present work we adopted the periodic finite element model of the cate-

nary proposed in [15]. This model provides highly accurate results, as demon-70

strated in [15], accounts for dropper slackening and has certain advantages for its

practical implementation. Due to the infinite periodicity foundation, the steady-

state solution provided by the PFEM is not influenced by the boundary-layer

effects. The model is also suitable for a total delay compensation technique,

which has shown good performance in virtual tests [15]. Our main aim was thus75

to describe the most important factors to be taken into account in performing

HIL pantograph tests with the above-cited catenary PFEM. We also describe in

detail the iterative algorithm used to achieve the steady-state regime and prac-

tical measures to prevent test instability. The HIL test results were validated

by a proposed method that can quantify the overall HIL-induced error.80

The remainder of this paper is organised as follows: Section 2 gives a descrip-

tion of the test rig used in the HIL tests. Section 3 describes the two strategies

used to perform HIL tests with the PFEM. Section 4 performs a stability para-

metric analysis of the two strategies proposed. Section 5 validates the HIL setup

and presents some of the results of different catenaries and train speeds, while85

Section 6 sums up our main conclusions.

2. HIL test-rig

The test rig used for the real-time interaction of virtual catenaries and real

pantographs is shown in Fig. 1. Its main elements are as follows:
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Figure 1: Test-rig components and information flow.

• Actuator: A linear magnetic motor (LINMOT PS10-70x240U) with a90

maximum velocity of 5.4 m/s and a maximum force of 1650 N.

• Actuator Controller: The E1450 motor drive controller receives posi-

tion references by UDP communication via a LinUDP bespoke protocol.

The controller generates intermediate sub-references using one of the sev-

eral sub-reference generation modes. The selected working mode is a linear95

interpolation (ramp) between reference points to avoid generating parasite

frequencies and discrete steps that lead to instability. A closed-loop PID

control strategy is used to follow all the sub-references generated. Since

communications with the driver are non-deterministic, the sub-references

are executed by a hardware trigger signal generated by the Real-Time100

Computer to guarantee periodic execution of the control commands.

• Real-Time Computer: A real-time CompactRio (CRIo-9040) device

from National Instruments™ forms the system’s brain, which carries out

the main tasks. It includes a Dual Core 1.30 GHz processor, 2GB RAM,

Ethernet communications, and several IO modules. The RT computer105

acquires the measured force. It also executes the main and control loops.
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The main loop has a rate of 2 ms in which it adquires the force value,

sends the value to the computer and receives its response. The motor

control loop has a rate of 10 ms in which it acquires the last displacement

value of the main loop and sends it to the Actuator Controller.110

• PC: This solves the virtual catenary PFEM implemented in Matlab™.

As it is essential to have a flexible code to test different settings of the

catenary in different experiments, this code runs on an Intel®CoreTM i9,

3.6GHz, eight cores and 64Gb RAM PC high-speed processor.

• Force measuring: Two load cells measure the force of the pantograph on115

the actuator. These signals are conditioned by two AC Strain amplifiers

(AS1201) that increase the signal levels and include a configurable filtering

stage (10Hz, 30Hz, 100Hz, 300Hz, or no filter).

• Pantograph: The pantograph selected for this research is a DSA®380.03.

The test rig materialises the vertical displacement of the catenary contact120

point when a force is applied. The process carried out, since this force is mea-

sured until the actuator achieves the response given by the catenary model,

follows the itinerary defined in Fig. 2. The time that this process takes has a

great influence on the accuracy of the response. The process starts when the

force is measured, then passes through a filter and the signal is converted into125

a digital value by the AD converter. The force value is picked by the RT com-

puter at the beginning of the RT main loop. The following step in this main

loop is to send the force to the PC, which after solving one time step of the

catenary dynamics, answers with the displacement value of the catenary that is

waiting to be sent at the beginning of the control loop. As the value is received130

by the motor driver that controls the actuator, the driver imposes intermediate

values following a ramp between the former and the current references. The

ramp finishes on receiving a new reference.

The different parts that account for the total delay can be identified by

following the above-described path. The acquisition keeps getting values very135
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quickly until the Main Loop of the RT computer picks one (negligible delay).

2 ms are spent until the iteration of the Main Loop is finished and the value

enters the Control Loop. The force value is sent to the actuator controller, taking

approximately 4 ms, and at this point a ramp of 10 ms (the time necessary to

get the next reference) starts. The total delay is thus 16 ms.140

Transducer

signal
Filter

AD

Converter

Waiting

RT clock

Sending

f to PC

Calculation

z

Receiving

z from PC

Waiting

Ctrl. clock

Start ramp

from z old

End ramp

at z

Force communication delay Calculation delay Actuator delay

Measurement acquisition

RT computer

PC

Actuator controller

Figure 2: Itinerary of the whole loop of the test rig

3. Iterative algorithm of the HIL pantograph tests

The catenary model used for the pantograph-catenary HIL test consists of a

periodic catenary modelled by the finite element method, which considers non-

linear dropper slackening behaviour. This model reproduces the steady-state

dynamic solution of the catenary under the action of a load moving at constant145

speed, which is representative of the central catenary spans of the pantograph-

catenary interaction.

The method used aims to find the steady-state solution of the pantograph-

catenary coupled system by means of the HIL rationale, in which the physical

device (pantograph) and the virtual model (catenary) of both systems are cou-150

pled (the pantograph is governed by transient dynamics and the virtual model

satisfies the steady-state equilibrium). To reach this stationary regime it is nec-
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essary to use an iterative procedure to traverse the inevitable transient period.

Both the catenary model and the iterative strategy used to guide the HIL test

were proposed in [15].155

In this section, the linear version of the catenary model and the iterative al-

gorithm are first briefly described, emphasising the main differences required to

implement them in a test environment. A new variant of the iterative algorithm

is also proposed to tackle the stability issues that arise in practical implemen-

tations, and the strategy used to consider dropper non-linear behaviour is also160

introduced.

3.1. HIL tests with a linear PFEM of the catenary

This section briefly introduces the key ideas of the framework proposed

in [15], although for further information the reader is referred to [15], which

provides the steady-state response of an infinite periodic catenary subjected to165

a moving load for a discrete-time environment. The solution relates the peri-

odic moving load vector f with the contact wire vertical position z due to the

application of this load vector. Due to the existing periodicity, the time domain

includes only the time taken by the load to travel across one span of the catenary

and is discretised into N steps, so that the time step n, n̂ ∈ [1, ..., N ], n being the170

time step of a given displacement and n̂ the time step of the load-application

point. Given a complete set of contact forces f(n̂) arranged in vector f , the

contact wire height z vector, which includes the contact points z(n), can be

directly obtained as:

z = z0 + Iccf (1)

z0 being the initial configuration contact point height (initial geometric catenary175

shape). With this scheme, the vertical displacement of the contact point u(n),

for all the time steps within the span, can be calculated by means of the product

of the contact force f and matrix Icc which contains the contribution of every

load value (column index n̂) to every displacement value (row index n).

The proposed model can give a response, provided the periodic contact force180

is known. This assumption does not apply to HIL tests, in which the force is
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measured and is not periodic (at least at the beginning of the test). The strategy

of accomplishing HIL tests with a catenary PFEM was proposed in [15]. Roughly

speaking, the goal is to measure the contact force along a span, compute the

catenary response and impose this vertical position with a periodic assumption,185

even if the contact force is not periodic, assuming that an iterative process will

reach the steady state.

HIL tests are performed following a discrete time scheme. In each global

time step, denoted by index k, every contact point displacement is imposed and

its contact force is measured. This global time is also organised in blocks of190

N samples in the form of the length of a period in the problem. The time is

denoted in every block b by index n̄, starting from 1 at the beginning of the

block. The measured contact force in a given time step is denoted as f̄(k) and

the vertical position of the actuator in this time step as z̄(k), which depends on

the contact force of the previous time steps, as will be explained below. When195

the test reaches convergence, displacement and forces are repeated in every block

and must satisfy Eq. (1). The measured contact force can also be referred to

as f̄ b(n̄) and the position sent to the actuator as z̄b(n̄), since every global time

step k represents a a local time step n̄ in block b.

Two alternatives are proposed in this paper for the iterative protocol of the200

HIL test, i.e. step-by-step and span-by-span updating. In the former we need

to compute the displacement of the next step in every time step in which the

force is measured, while the span-by-span updating strategy initially defines the

position of the actuator along the whole span.

3.2. Step-by-step updating205

The method used to perform step-by-step HIL tests with the periodic cate-

nary model is represented in the scheme in Fig. 3. Note that the global time

of the test is represented by the markers on the horizontal line. The different

points in the figure are as follows:

• Point 1: Let us say that the test is in the k global time step (or time step210

n̄ within the block b, as represented by the pantograph illustration) and
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the pantograph has reached the displacement sent from the previous time

step k − 1.

• Point 2: The force f̄ b(n̄) is measured simultaneously to Point 1.

• Point 3: The measured force is placed in vector fk (which changes every215

time step k, as denoted by the superscript) in the right position n̄ while

the other elements of this vector remain unaltered.

• Point 4: Eq. (1) is applied to compute the response of the periodic model

with fk, producing the zk vector which replaces the one in the previous

step k − 1. Note that in this case, all the components in vector zk change.220

• Point 5: The vertical position of the next step n̄+1 is taken from zk since

this is the position that would be reached in the next step k + 1. At this

point, a more advanced position to n̄+1 can be extracted from zk in order

to compensate for any possible delay.

• Point 6: The displacement is sent to the actuator.225

• Point 7: It is time to move to the next step and the timeline depicted at the

bottom of the figure moves one position to the left, so that the pantograph

can reach the position sent from point 6. The indexes of Points 3 and 5

drop down a position to be ready to receive and give the right values in

the next step k + 1.230

In Point 4, the PFEM’s response is computed according to Eq. (1), but as

explained in [15], a mathematically equivalent formulation can be used to reduce

the computation time. Then, zk can be equivalently obtained by considering

the force increment in every time step:

zk = zk−1 + Icc(n̄)(f̄ b(n̄) − f̄ b−1(n̄)) (2)

due to the fact that only one element of vector fk is changed in every time step.235
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Figure 3: Graphical description of the step-by-step HIL test architecture with a PFEM

of the catenary.

3.3. Span-by-span updating

A different updating strategy is here proposed to circumvent some conver-

gence issues. This new strategy follows the four first points listed in Section 3.2

and shown in Fig. 3, but the differences arise in Point 5. Whereas a single value

of vector zk was extracted in the step-by-step strategy and it would continue its240

way to Point 6, in the span-by-span updating strategy there is a memory rack

between Points 5 and 6. Only at the time step n̄ = N (at the end of each block)

the whole vector zk is extracted and its N values are stored in the memory.

The stored vector is called zb and it fulfils zb = zk if k = bN . According to

the proposed scheme, the displacement z̄b(n̄) sent to the actuator in Point 6245

is computed from the stored vectors zb of the two previous blocks, combining

both with linear shape functions to avoid lack of continuity at the beginning of

a new block, i.e.:
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z̄b(n̄) = N1(n̄)zb−2(n̄) + N2(n̄)zb−1(n̄) ; n̄ ∈ [1, N ] (3)

in which N1 and N2 are linear shape functions which go from 1 to 0 and

from 0 to 1, respectively. This method has a different performance in terms of250

stability, which will be discussed in Section 4.

3.4. Delay compensation

As mentioned in Section 2, there is a consumed time in the test loop (see

Fig. 2) that delays the response of the catenary. A delay of D time steps exists

from the moment at which the contact force is measured in Point 2 (Fig. 3) until255

the pantograph reaches the position computed in Point 5. Fig. 3, represents the

unavoidable delay of one step D = 1, but an extra delay is also considered in

Point 6 of the figure by a grey arrow. If the position sent to the actuator takes

the path defined by the grey arrow, it will be placed in a later position on the

timeline because it will need more time steps to be achieved by the pantograph.260

Note that this delay does not affect the rate of the loop, the pantograph

will reach the sent position later but it does not prevent the next time step

from starting. One of the main advantages of the catenary PFEM is that this

delay can be easily allowed for because the contact wire height zk includes the

displacement values at all times n in the span. To compensate for a given delay,265

the position value extracted in Point 5 in Fig. 3 is thus the n = n̄ + D indicated

by the grey arrow. This procedure eliminates the error produced by the delay in

the dynamic response, since at the end of the test, when convergence is achieved,

fk and zk do not change and the value at time step n = n̄ + D will be a perfect

prediction.270

3.5. Frequency content reduction

Another important aspect to consider is that we can limit the frequency

content of the actuator displacement. As vector z is periodic, it can be shifted

to the frequency domain by the discrete Fourier transform (DFT) and then the
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higher frequencies can be removed before being brought back to the time domain275

by the inverse discrete Fourier transform (IDFT).

A number of Nh frequencies (the zeroth harmonic included) are considered

in this frequency reduction, fmax being the highest frequency included. This

number plays an important role in the stability of the HIL test because if fmax

is higher than the biggest frequency that the gear can control it will lead to280

deficient performance. The whole process can be done directly by applying

matrix operations to z. Let us define the DFT matrix operator as:

W = e
−2πi

N
mn

⊤

for
m = [0, 1, ..., Nh − 1]⊤

n = [0, 1, ..., N − 1]⊤
(4)

With the same approach, the IDFT matrix can be obtained as:

V =
1

N
e

2πi

N
nm

⊤

A (5)

A being an Nh ×Nh diagonal matrix with a 1 in the first element of the diagonal

and a 2 in the other components, to duplicate the value of columns 2 to Nh of285

matrix V due to considering the unilateral representation of the DFT. These

two operations defined in Eqs. (4) and (5) can be combined in a single matrix,

i.e.:

W̃ = Re(VW) (6)

Thus, to filter vector z, Eq.(1) is multiplied by W̃:

z̃ = W̃ [z0 + Iccf ] (7)

This filtering operation can be precomputed by applying the operator W̃ to Icc290

and z0 so that Eq. (1) is rewritten as:

z̃ = z̃0 + Ĩccf (8)

3.6. Relaxation coefficient and initial ramp

Another difference between the numerical algorithm proposed in [15] and

that used to perform HIL tests relies on a relaxation coefficient µc to reduce
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the sharp change between the response of successive blocks during the iterative295

procedure. In Point 3 in Fig. 3, the measured force replaces the element n̄ of

fk, in which the measure of the previous block was previously allocated. If the

relaxation is applied, the current measurement will be relaxed with the old one,

resulting in:

rf̄ b(n̄) = rf̄ b−1(n̄) + µc(f̄ b(n̄) − rf̄ b−1(n̄)) (9)

which will be allocated finally in the void. This relaxation can be included in300

Eq. (2)

zk = zk−1 + µcIcc(n̄)(f̄ b(n̄) − rf̄ b−1(n̄)) (10)

This coefficient is used to ensure convergence of the test and plays an important

role in the stability of the iterative method, as explained in Section 4.

To avoid a sudden jump at the beginning of the HIL test, the height sent to

the actuator is scaled by a factor that varies linearly from 0 to 1 step by step,305

thus defining an initial ramp that lasts Nr steps.

3.7. Considering dropper slackening

In Point 4 of the loop (see Fig. 3), Eq. (1) is used to compute the response

of the catenary, given a contact force, although additional external actions can

also be applied. Non-linear dropper slackening behaviour is essential to perform310

accurate simulations and can be considered by adding external correction forces,

which depend on the elongation of the droppers, as explained in [15]. If matrix

Icd includes the stationary response of the contact point produced by a com-

pressive force acting on both ends of dropper d, then Eq. (1) can be extended

to:315

z = z0 + Iccf +

Nd∑

d=1

Icdfd (11)

in which fd is the correction force vector of dropper d, Nd is the total number

of droppers. Note that Icd rows indicate the time step of the contact point

displacement and its columns are related to the time step of the dropper force

application.
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So far, the response of the catenary has been evaluated at the contact point320

only, but hereinafter the dropper elongation also needs to be computed. Let us

define matrices Idc and Idd, which account for the dropper elongation produced

by the contact force and the other droppers’ correction forces, respectively. The

total elongation of dropper d can therefore be computed as:

∆Ld = Idcf +

Nd∑

d=1

Iddfd (12)

As in z, it is important to limit the frequency content of ∆Ld in order to325

ease the convergence of the method. To this end, the terms involved in Eq. (12)

are pre-multiplied by the matrix W̃d, which is built like W̃ (see Section 3.5),

but considering in this case a different number of harmonics Nhd.

In the same way that fk is treated in Point 4 of the HIL loop, vector fk
d is

modified in each time step n̄ by replacing the corresponding elements with the330

dropper forces computed in that step. As described in Section 3.6, relaxation

can also be applied to fk
d with a coefficient µd (See [15] for further information).

4. Stability parametric analysis

This section describes the stability of the proposed method, which depends

on several factors: the catenary model, the pantograph, the frequencies included335

in the catenary response, the stiffness of the contact, the relaxation coefficient

and the delay. For the sake of simplicity, stability is studied in a computational

environment, replacing the real pantograph by a numerical model and using

the penalty method as the contact model and performing a numerical time

integration in what we call a virtual HIL test.340

To study the stability it is necessary to express the problem as a linear it-

erative process in which the variables or state vector in any iteration can be

written as a linear operation applied to the previous state. In the specific prob-

lem of a virtual HIL test, the iterative formulation has a certain complexity

because the concept of iteration refers to an entire block iteration instead of a345
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time-step iteration, so that every iteration includes the application of another it-

erative method to numerically integrate the dynamic response of the pantograph

model.

The state vector of block b, Xb, considers the necessary variables to compute

the state vector of the next block, such as the displacement/force of the contact350

point in every time step, among others. This section mainly defines the iterative

linear operation to analyse the stability of the method by means of the spectral

radius, which can be written as:

Xb+1 = AXb + B (13)

in which all the vectors and matrices depend on the HIL strategy followed (their

definitions can be found in Appendix A). Once the matrices in Eq. (13) are355

obtained, the virtual HIL test can be conducted by applying this linear operation

iteratively, and the stability of the iterative procedure can be determined by the

spectral radius of matrix A.

Parametric studies are performed for the span-by-span and step-by-step ap-

proaches to analyse the stability of the proposed HIL strategy, including the360

influences of the number of harmonics considered in the catenary response Nh

(related to the higher frequency fmax), and the contact stiffness kc. We use

a specific stitched catenary model (defined in Section 5) and a one-degree-of-

freedom pantograph model, also considering the delay in our actual test rig.

The pantograph model has a mass of 6.6 kg, a stiffness of 7000 N/m and a365

damping of 10 Ns/m and similar behaviour to the pantograph used in real HIL

tests. The frequency of the loop is ∆t = 2 ms and the delay is D = 8.

The spectral radius obtained by the span-by-span updating strategy is shown

in Fig. 4 (a) for different fmax and kc. Values bigger than 1, that indicate

unstable behaviour, are hidden in white. At every point on the map, the value of370

the relaxation coefficient µc, which minimises the spectral radius, is chosen and

plotted in Fig. 4 (b). The same information is shown in Fig. 5 for the step-by-

step updating strategy. The solid red curve highlights the natural frequency of
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the pantograph model, including contact stiffness. The span-by-span approach

results can be seen to be more stable, and the pantograph’s natural frequency375

is a barrier to stability. Higher contact stiffness can therefore improve stability

and it is required to reduce the number of frequencies involved in the response

of the catenary model below the natural frequency related to the pantograph

contact degree of freedom.

(a) Spectral radius (b) µc optima

Figure 4: Stability analysis of the span-by-span updating scheme with delay D = 8.

(a) Spectral radius (b) µc optima

Figure 5: Stability analysis of the step-by-step updating scheme with delay D = 8.

Unlike the span-by-span method, the delay plays a fundamental role in sta-380

bility in the step-by-step strategy. Fig. 6 shows a similar representation but
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with a contact stiffness kc = 6 · 105 N/m and including the delay as a param-

eter. The figure shows a repetitive pattern of the delay, which makes possible

including an additional delay to achieve a stable zone.

(a) Spectral radius (b) µc optima

Figure 6: Stability analysis of the step-by-step updating scheme with contact stiffness

kc = 6 · 10
5 N/m.

5. HIL tests results385

This section is devoted to the practical implementation of the HIL test and

a discussion of the results. A stitched catenary [16] and a simple catenary [17]

are modelled by PFEM for the numerical model, since they are the two most

representative catenary types. A single span of each catenary model is depicted

in Fig. 7. The time step used in all the examples studied is ∆t = 2 ms and the390

span-by-span updating strategy was selected for stability reasons, as concluded

in Section 4. Each HIL test is performed for 120 s, the initial ramp being active

in the first 40 s, so that Nr = 20000. The relaxation coefficients are µc = 0.1

and µd = 1. The number of harmonics included in z and ∆L, Nh and Nhd

respectively, are tuned to include the maximum frequency content that provides395

stable tests. All the results of the experimental HIL tests shown were obtained

as the average of 10 spans in which the steady-state response was achieved.

Additional tests are performed to validate the accuracy of the results before

the HIL tests on the pantograph.
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Figure 7: a) Stitched and b) simple catenary spans for the PFEM catenary models.

5.1. HIL test validation with an attached mass400

To validate the results obtained from the HIL tests, we use the same strat-

egy as that proposed in [18], which consists of attaching an aluminium mass

directly to the load cells to take on the role of a hardware device replacing the

pantograph. A photo of the assembly described with the attached mass is pro-

vided in Fig 8. The whole HIL test can be accurately simulated by computer405

for this scenario, which avoids the uncertainties of using a mathematical panto-

graph model. The results of these full HIL simulations can serve as a validation

reference for the whole HIL setup (measurement, communication, computation

time, delay, etc.).

Figure 8: Aluminium mass acting as hardware substructure for validation purposes.

The contact force between the mass and the virtual catenary obtained from410

the HIL test and the simulated HIL are compared in Fig. 9. The forces repre-
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sented are the mean of the ten last fk when the steady state is achieved. In

this example, the simulated speed is v = 250 km/h (Fig. 9a) and v = 300 km/h

(Fig. 9b) and the interaction takes place with the stitched catenary (see Fig. 7a).

We used Nh = 25 for 250 km/h and Nh = 21 for 300 km/h to consider frequen-415

cies up to 25 Hz in both cases. A delay of D = 8 time steps (16 ms) was used to

anticipate the reference position. The good agreement between both the exper-

imental and simulated contact forces indicates that the HIL test rig is properly

calibrated to provide accurate results.
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Figure 9: Comparison of contact forces obtained from experimental HIL tests (solid

line) and virtual HIL (dashed line) with the mass travelling at a) 250 km/h and b) 300

km/h.

In the previous example any dropper could slacken, so that only the linear420

response of the catenary PFEM was active. To also validate the HIL test setup

with nonlinear catenary behaviour, the HIL test with the mass virtually moving

at 300 km/h was repeated, but now we added numerically 160 N to the force
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measured by the load cells. The resulting force was that applied to the virtual

catenary. As can be seen in Fig. 10, not only does the contact force measured425

agree with that obtained from the pure simulated HIL, but the slackened dropper

correction forces are also in very good agreement.
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Figure 10: Comparison of contact forces (top figure) and slackened dropper correction

forces (bottom figure) obtained from experimental HIL tests (solid line) and virtual HIL

simulations (dashed line) with the mass travelling at 300 km/h and a mean pushing

force of 160 N.

5.2. HIL tests with the pantograph DSA-380

This section gives the results of the HIL tests with the real pantograph DSA-

380 interacting with a virtual periodic catenary. As previously mentioned, we430

use a PFEM of both the stitched and the simple catenaries shown in Fig. 7. The

experimental results are compared in this case with the contact force obtained

from a standard simulation of the pantograph-catenary dynamic interaction.

We use PACDIN software [19] to perform these simulations, which participated

in the benchmark exercise [17]. The catenary model simulated in PACDIN has435
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repetitive spans and is long enough to guarantee a stationary response in its

central spans to obtain comparable results. The contact force on 5 consecu-

tive central spans is selected to make the comparisons, while the pantograph is

simulated by a linear lumped mass model.

0 10 20 30 40 50 60

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50 55

80

100

120

140

160

180

200

Figure 11: Comparison of contact forces obtained from experimental HIL tests (solid

line) and conventional simulation with PACDIN of the pantograph-catenary dynamic

interaction (dashed line) with the pantograph running at 250 km/h and interacting with

a) the stitched catenary model and b) the simple catenary model.

The pantograph-catenary contact force obtained from the HIL tests and440

PACDIN are compared in Figs. 11 and 12 with the pantograph running at 250

and 300 km/h, respectively, for both the simple and stitched catenaries. Al-

though the HIL tests performed include the number of harmonics shown in

Table 1, the contact force used in the comparisons is filtered to 25 Hz. This

frequency exceeds the 20 Hz that must be considered for validation and com-445

parison purposes in this type of simulations according to the standard [20]. The

mean value of the contact force given in Table 1 is related to the train speed
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required to meet the criterion given in standard [21].

Table 1: Number of harmonics considered in HIL tests and mean value of contact

force.

Stitched Simple

v [km/h] Nh Nhd Nh Nhd Mean force [N]

250 31 107 25 90 ≈ 130

300 27 90 22 40 ≈ 157

Figs. 11 and 12 show that the contact forces computed on PACDIN for 5

consecutive spans overlap each other, indicating that the steady-state regime450

was achieved and this solution is suitable to be compared with the PFEM of

the catenaries used in the HIL tests. The other important conclusion drawn

from these results is the notable similarity between the HIL tests and the stan-

dard simulation. As the HIL set-up was properly validated in Section 5.1, the

discrepancies that can be seen in Figs. 11 and 12 are mainly due to the inability455

of the pantograph model used in PACDIN to accurately reproduce the dynamic

behaviour of the real pantograph device because non-linear features such as dry

friction or joint clearances are not accounted for in the model.
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Figure 12: Comparison of contact forces obtained from experimental HIL tests

(solid line) and conventional simulation of the pantograph-catenary dynamic inter-

action (dashed line) with the pantograph running at 300 km/h and interacting with a)

the stitched catenary model and b) the simple catenary model.

5.3. HIL tests with optimised catenaries

HIL tests can also be applied to validate the dynamic behaviour of a given460

catenary model designed or tested only by numerical simulations. TeGreg2018Optim

the authors proposed an optimisation of the catenary geometry to obtain the

minimum standard deviation of the contact force and therefore to improve the

current collection quality when the train travels at 300 km/h. However, the

optimisation procedure was fully based on numerical simulations in which a465

lumped mass model of the pantograph was used. To remove the limitations

of this simple pantograph model and validate the optimised catenary designs

when interacting with a real pantograph, we perform HIL tests in this study

using the catenary PFEMs derived from the optimised geometry obtained in

[16]. The contact wire height at dropper connection points was optimised in the470
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optimised catenary 1 (OC1) and dropper spacing was optimised in optimised

catenary 2 (OC2) while keeping the symmetry of the span in both cases. These

two optimised geometries can be seen in Fig. 13, in which the vertical scale of

OC1 was tuned for a better appreciation of the contact wire height variation

along the span.475

Figure 13: PFEM models of optimised stitched catenaries at 300 km/h with a) optimal

contact wire height and b) optimal dropper spacing.

The pantograph-catenary contact force obtained in the HIL tests is plotted

in Fig. 14 for both optimised catenaries and is compared with the results of

numerical simulations performed with PACDIN, the software used to optimise

the catenary geometry [16]. The inputs shown in Table 1 for v = 300 km/h are

also applied in these HIL tests. The main conclusion of this section is drawn480

from comparing some statistical parameters of the contact force in the nominal

and optimised catenaries. While the former has a maximum contact force of

261.9 N and a minimum contact force of 78 N, these values become 208.2 N and

110 N in the OC1 and, 196.1 N and 124.9 N in the OC2 evidencing a greatly

reduction of the maximum value and a considerable increase of the minimum485

contact force. Furthermore, the contact force standard deviation, which is used

as a current collection quality indicator, is 11.24 % and 21.87 % lower for OC1

and OC2 than that obtained from the nominal catenary. These catenary designs

therefore still behave better than the nominal design when interacting with a

real pantograph, which is a further step towards the final implementation of490

these optimised overhead contact lines.
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Figure 14: Comparison of contact forces obtained from experimental HIL tests

(solid line) and conventional simulation of the pantograph-catenary dynamic inter-

action (dashed line) with the pantograph running at 300 km/h and interacting with a)

the optimised catenary model 1 and b) the optimised catenary model 2.

6. Conclusions

The present work addressed the implementation of HIL pantograph tests

with the use of a periodic finite element catenary model proposed in [15],

although it is limited to the steady-state interaction regime, it incorporates495

non-linear dropper slackening behaviour and has some important advantages in

performing stable HIL tests, such as the ease of tackling delays and limiting

the frequency content of the response. Regarding the stability of the iterative

scheme used to carry out the HIL tests, a span-by-span updating strategy was

proposed and shown to be independent of delay and thus the most robust in500

practice.

The accuracy of the HIL setup was first validated by a mass block interacting
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with the virtual catenary with good agreement of the simulation and experimen-

tal results. The results of some HIL pantograph tests interacting with different

catenaries and travelling at different speeds were then compared with the results505

of conventional dynamic simulations. The few discrepancies obtained in these

comparisons can be attributed to the inability of the linear pantograph model

used in the conventional simulations to reproduce the real dynamic pantograph

behaviour.

Briefly, the results of the HIL pantograph tests described here offer:510

• Accurate spatial discretisation of the catenary by means of the Finite

Element Method.

• No boundary effects due to the periodicity condition applied.

• Ideal compensation for the delay.

• Incorporation of dropper slackening behaviour.515

However, the proposed approach is limited to the steady-state regime and to

considering certain particularities of actual catenaries in HIL tests, factors such

as overlapping sections, local irregularities or curved paths are still a matter for

further investigation.
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Appendix A. Formulation for stability analysis525

This appendix calculates the terms of Eq. (13) to carry out a virtual HIL

simulation in a linear iterative process. The virtual HIL simulation is performed

completely in a computational environment in which the pantograph is also
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simulated. As mentioned in Section 4, this is necessarily an intricate formulation

as all the steps carried out for the time integration of a whole span have to be530

considered in the matrices of Eq. (13). The formulation changes for the two

different approaches, the span-by-span and the step-by-step updating strategies.

Appendix A.1. Span-by-span state formulation

For the sake of simplicity and without any loss of generality, let us define the

pantograph model as a single degree of freedom model, whose vertical displace-535

ment is defined as yb
n̄ (for a given span or block b and the time step n̄ within

this block) and arranged in vector yb. The state variables chosen for a block b

are:

Xb = [zb−2 zb−1 ẏb−1
N yb−1

N ]⊤ (A.1)

which includes the zb values of the two previous spans and the displacement

and velocity of the pantograph model in the last time step N of the span b − 1.540

The state variables for the next span can be computed according to Eq. (13) as:

Xb+1 = AXb + B (A.2)

To build the matrices A and B it is necessary to assemble all the linear op-

erations that happen in the block b. The vertical position z̄b(n̄) or z̄b
n̄ of the

contact point which will be imposed throughout the block b can be computed

from the state vector with Eq. (3). The displacement yb of the pantograph545

model, excited by z̄b
n̄, can be obtained using a discrete-time integration scheme.

For example, if the Newmark method is chosen, it can be expressed as:


 ẏ

y




b

n̄

= Â


 ẏ

y




b

n̄−1

+ B̂ z̄b
n̄−1 + Ĉ z̄b

n̄ (A.3)

If this iterative scheme is applied recursively from the first time step of the span

until a given step n̄, it results in:


 ẏ

y




b

n̄

= Â
n̄


 ẏ

y




b−1

N

+
n̄∑

j=1

Â
n̄−j

(
B̂ z̄b

j−1 + Ĉ z̄b
j

)
(A.4)
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By rearranging Eq. (A.4), yb can be obtained from the linear relation with the550

state vector: 
 ẏb

yb


 =


 Q1

Q2


 Xb (A.5)

The measured contact force (f̄ b(n̄) arranged in the vector f̄
b
) comes from the

penalty method equation and again, a linear relation can be established:

f̄
b

= kc(yb − z̄b) ≡ RXb (A.6)

As described in the span-by-span updating strategy (see Section 3.3), in point 5

of Fig. 3, the vector zb is fully defined when n̄ = N , time step in which fk = f̄
b
.555

Thus, according to Eq. (1):

zb = z0 + Iccf̄
b

(A.7)

Additionally, as the force has not been included in the state vector, the relax-

ation coefficient can be applied here equivalently:

zb = µc(z0 + Iccf̄
b
) + (1 − µc)zb−1 ≡ SXb + µcz0 (A.8)

The state vector of the next span can be built as:

Xb+1 = [zb−1 zb ẏb
N yb

N ]⊤ = [zb−1 SXb + µcz0 Q1|N Xb Q2|N Xb]⊤ (A.9)

in which |N refers to the N row.560

So far, the delay has not been considered but its unavoidable existence in

a real HIL test affects its stability. The formulation can then be modified to

consider a delay of D time steps in the imposed displacement z̄b(n̄), affecting

Eq. (3):

z̄b(n̄) =





N1(m)zb−3(m) + N2(m)zb−2(m) if n̄ ≤ D

N1(n̄−D)zb−2(n̄−D) + N2(n̄−D)zb−1(n̄−D) if n̄ > D

(A.10)

being m = N+n̄−D and therefore, at least the last D values of zb−3 should be565

included in the state. As the delay in the HIL test is known, the compensation

can be applied by defining zb as:

zb = [z(N − D + 1) z(N − D + 2) ... z(N) z(1) z(2) ... z(N − D)]⊤ (A.11)
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Appendix A.2. Step-by-step state formulation

The stability of the HIL iterative procedure depends on the updating strat-

egy followed. In this section, we describe the procedure to obtain the iterative570

linear operation that applies between consecutive spans for the step-by-step

approach. In this case, the state variables vector includes the displacement im-

posed in the last step of the previous block, the relaxed force of the previous

block and the velocity and displacement of the pantograph model in the last

step of the previous block, respectively. That is:575

Xb = [z̄b−1
N

rf̄
b−1

ẏb−1
N yb−1

N ]⊤ (A.12)

Now the displacement z̄b of the contact point imposed comes from Eq. (1),

taken by considering that the vector fk is made up of values of the contact force

from both the previous and the current block:

z̄b = z0 + Tf̄
b

+ Urf̄
b−1

≡ z0 + Tf̄
b

+ VXb (A.13)

in which T = µcIccW and U = Icc − T with:

W =




0 0 0 · · ·

1 0 0 · · ·

1 1 0 · · ·
...

...
...

. . .




(A.14)

Eq. (A.4) provides the pantograph model displacement yb produced by z̄b
580

and this equation can be written as:

yb = Yz̄b + ZXb (A.15)

Eqs. (A.6), (A.13) and (A.15) form a linear system whose unknowns are f̄
b
,

z̄b and yb. Once solved, the state variables of the next span can be built as:

Xb+1 = [z̄b
N

rf̄
b

ẏb
N yb

N ]⊤ (A.16)

in which rf̄
b

= µcf̄
b
+(1−µc)rf̄

b−1
. A delay of D time steps and its compensation

can be added to the formulation as in the span-by-span updating strategy.585
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