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Abstract

Hardware-in-the-loop testing serves as a method to examine the dynamic interaction between the pantograph and
catenary within controlled laboratory environments. This task involves measuring the force from the pantograph, using
a real-time catenary model to determine the next pantograph position, and generating the desired pantograph movement
to complete the loop. To address potential instability issues arising from communication delays and the inherent stiffness
in the interaction with pantograph strips, a mass-spring system and a Linear Quadratic Gaussian controller are integrated
into the system. The catenary is a finite element model of a complete section, incorporating the non-linearity introduced
by dropper slackening. Validation of the results demonstrates a good level of accuracy in the HiL test approach within
the frequency range of 0-20 Hz.
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1. Introduction

Hardware-in-the-loop (HiL) testing [1, 2, 3] is a method
of assessing the performance and reliability of mechatronic
systems. HiL testing integrate physical hardware compo-
nents into a simulated environment, to enable engineers
to evaluate the system‘s behaviour in real-world condi-
tions. Hybrid Simulation (HS) [4, 5, 6] is a broader test-
ing approach that combines physical and computational
elements to evaluate the behaviour of an entire system or
structure in which only a part of the system is physically
tested, while the rest is simulated in a computational en-
vironment. The physical and virtual components are con-
nected in real time, allowing interactions between them.
HS faces specific challenges related to the stability of the
systems due to delays in the signals, delays on the actua-
tors, or high-frequency components included in the com-
putation phase [7, 8]. Although there are differences, in
the context of pantograph-catenary system the terms HS
or HiL have been interchangeably used in the literature
to describe tests involving a real pantograph interacting
with an actuator behaving in accordance with a numerical
catenary model. Throughout this work the term HiL is
used.

Computer simulation is a powerful modeling tool com-
monly used in designing new overhead contact lines (also
known as catenaries) for railways and assessing interaction
with the pantograph. EN50318 regulation describes the re-
quirements for validation of numerical simulation codes.
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The overhead contact line (OCL) computational model
should contain the main components of the structure, such
as contact and catenary wires, droppers and steady arms,
and should fulfill the geometry and conditions imposed in
the OCL assembly. The pantograph is usually simulated
as a lumped mass model in which only the vertical dy-
namics is considered. The state-of-the-art in simulation
models can be found in [20]. EN50318 standard allows
the use of real pantographs to assess the interaction with
an OCL computational model, this being the first applica-
tion of HiL tests. In addition, HiL can be used to test new
pantographs or new components, such as contact strips or
suspensions, guaranteeing the safety and reliability of the
system. It can also be used to improve current collection
quality developing active pantograph systems through the
interaction with a catenary model.

Testing of pantographs is essential to guarantee the
safety, reliability, and economic sustainability of railway
systems. In this work we propose a HiL method for testing
the pantograph-catenary interaction. This is a complex
task that requires measuring the force from the real panto-
graph, and putting the measure into a real-time catenary
model that computes the next pantograph position, and
generate the desired movement of the pantograph, thus
closing the loop. Some factors can generate complexity
in the problem: non-linearities, non-modeled dynamics on
Pantographs, delays on the actuator, delays on the force
measures, noise in the force measure, or high frequencies
generated in the system, among others.

The literature contains various approaches to HS or
HiL testing, using different catenary models with varying
degrees of approximation and diverse actuation and con-
trol technologies.
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In 2002, a test rig was developed for the hybrid sim-
ulation of pantograph-catenary system [9]. The catenary
model consists of five equal spans. Contact and support
wires were modeled using a modal basis and droppers as
linear springs. This model was solved in real time with
a time increment of 2 ms using a PII computer with 300
MHz processor.

In Politecnico di Milano (see [10] and references therein)
the test rig includes an electrohydraulic actuator for the
vertical movement and an electric motor for the lateral
movement (stagger of the catenary). The real-time cate-
nary model is composed of two tensioned wires joined by
non-linear droppers and the motion of the system is repre-
sented by a reduced number of d.o.f. and sinusoidal func-
tions in both the messenger and the contact wire. This
catenary has a length of 3 or 5 spans and a shift-forward
strategy allows the emulation of a longer catenary. The fre-
quency range of validity is 0-20 Hz. In their last published
work [10], HiL test results with the ATR95 pantograph
and C270 Italian catenary were presented.

In TUW, Schirrer et al. [11] proposed more complex
catenary model characterised by the use of moving coor-
dinates, finite differences and absorbing boundary layers
to dissipate outgoing perturbations. It is also intended for
the 0-20 Hz range, although the actuator is formed by an
industrial robot and a linear motor, thus allowing higher
speeds and broader bandwidths. This approach includes a
Model Predictive Control (MPC) to guarantee stability in
the HiL tests despite the test rig limitations, uncertainty
in the pantograph model, and measurement noise.

The work of Kobayashi et al. [12] shows the latest tests
performed at RTRI in Tokyo where a lumped mass system
with multiple degrees of freedom is used to simulate the
catenary. The test rig includes a servohydraulic actuator
to impose vertical displacement on the pantograph. The
paper shows that several issues, such as modelling errors,
significantly affect the simulation accuracy, so they must
include a controller to guarantee realistic testing. In this
case, a substructure control algorithm is included in par-
allel with the pantograph-catenary interaction loop to en-
sure that the pantograph moves according to the simulated
catenary contact point. The HiL experimental results are
compared with a fully simulated HiL test, showing better
agreement in the frequency domain than in time domain.

In previous works, the authors performed HiL tests
with two different catenary models. The first one [13] is a
broad simplification in which a tensioned string and vis-
coelastic layer emulate the dynamic behaviour of the cate-
nary. The second catenary model [14] is a faithful finite
element model with non-linear droppers which allows only
periodic pantograph-catenary interaction. In those works
a delay compensation technique was employed, leading to
accurate results in the 0-25 Hz range. Note that all the
works found in the literature consider a periodic arrange-
ment of the catenary in their HiL tests.

The aim of this paper is to propose a new algorithm for
HiL pantograph testing using a Linear Quadratic Gaussian

(LQG) controller. The catenary is a finite element model
of a complete section that can be solved in real time and
is based on modal decomposition and offline precomputa-
tion of certain matrices. It considers non-linear dropper
slackening and general geometry including different num-
ber of droppers per span, contact height, etc. The test rig
system is split into two subsystems for the HiL algorithm.
The first is the real-time catenary model that includes an
intermediate interaction mass-spring system between the
measured force and the numerical model. The second sub-
system is composed of the measurement and communica-
tion devices, actuator and pantograph. An LQG controller
is proposed for the second subsystem with the objective of
minimizing the difference between the reference position
sent to the actuator and its real position.

The paper is organized as follows: Section 2 describes
the catenary model. The real-time model is assessed by
comparing the results with a catenary simulation code val-
idated according to EN50318 [15]. Section 3 describes the
HiL test rig components and operation. The main contri-
bution of the paper can be found in Section 4, in which a
the LQG controller is proposed for the HiL actuator con-
sists of a state space Linear Quadratic Regulator (LQR)
plus a Kalman Filter (KF) for state estimation. The re-
sults of the HiL test and validation of the proposed method
are given in Section 5. The paper finalizes with the con-
clusions.

2. Real-time catenary model

HiL testing requires the catenary model to be solved in
real-time, i.e. given a contact force, the model must pro-
vide the position of the pantograph contact point faster
than the integration scheme time step. A high time incre-
ment allows adding more degrees of freedom and features
to the catenary model but has the disadvantage of reducing
simulation accuracy. A time increment of ∆t = 2 ms pro-
vides a good balance between accuracy and real-time ca-
pabilities, as analysed in [16]. Here, we follow the method
presented in the previously cited work to develop the real-
time catenary model. For the sake of clarity, we recall here
its main features but refer readers to [17] for further details
of the formulation. In Section 2.3, we extend the model
to solve the interaction between the pantograph and the
catenary through an intermediate system.

The finite element code of the catenary, proposed in
[18] for the static and [19] for the dynamic problem, is
taken as a reference for comparison with the real-time
model simulations (see Section 2.4). This code was val-
idated in the catenary Benchmark [20] and according to
EN50318 [15].

Figure 1 shows a scheme of the finite element model
of an OCL with 20 spans each of L = 65 m length. Note
that the image is distorted due to different scales of the
horizontal and vertical axes. The structural elements that
support the whole system (masts and cantilevers) are re-
placed by equivalent boundary conditions. The contact
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Figure 1: Finite element model of a 20-span catenary section. Pantograph force is gradually introduced from span 3.

wire (shown in red) interacts with the pantograph located
on the vehicle’s roof, and is held at a predefined height
with the help of droppers (shown in green), steady arms
(shown in black) and the carrier wire (shown in blue). The
carrier wire and steady arms are supported regularly on
brackets (not shown) at a certain height over the track.
The droppers are fixed to the contact and carrier wires by
clamps. The stitch wire (shown in purple) modifies the
stiffness of the catenary near the supports. As in the case
of the droppers, clamps are used to attach the stitch wires
to the carrier and contact wires.

A general catenary geometry can be simulated. The
first and last two spans are transition spans with wire el-
evation, while every internal spans can have a different
number of droppers and mast distance. Contact and mes-
senger wires are discretized with ANCF elements, whilst
droppers and steady arms are modeled by articulated bar
elements. Wire tractions and the conditions imposed in
the catenary stringing are also considered (see [18] for de-
tails). The pantograph interaction is gradually introduced
from span number 3, with a 50 m ramp in which the pan-
tograph force is linearly increased.

2.1. Dynamic simulation of a single section
The static configuration problem is solved using the

non-linear full finite element model of a single section [18].
The problem is linearized in that configuration and some
matrices and vectors are extracted for use in the real-time
dynamic model:

• Mass matrix Mc, damping matrix Cc and stiffness
matrix Kc. The dimension of these squared matrices
is the number of degrees of freedom of the discretiza-
tion, ndof. Proportional damping is considered.

• z0
c : Vector of dimension ndof containing the static

position nodal degrees of freedom.

• F0
d: Vector containing the traction forces exerted by

the nd droppers in the static configuration.

In addition to the above, some other matrices are pre-
computed for convenience in an offline stage, to achieve

real-time capabilities. We assume a constant train speed
V and a single contact point, so that the pantograph po-
sition is known in advance and the nc potential contact
points on the contact wire can be obtained. Each con-
tact point is associated with a time step t. Nt

c denotes
the interpolation vector, which extracts the contact point
magnitude at time t from the total nodal values. Subindex
c in this vector refers to the catenary’s degrees of freedom
involved in the interpolation. This operator also allows the
contact force to be transfered to the finite element nodes
every time step.

Using the matrices defined above, the dynamic equilib-
rium problem at time t can be written as :

Mcüt
c + Ccu̇t

c + Kcut
c = Nt

c
T

F t−1
c t = 1, . . . , nc (1)

where ut
c, u̇t

c and üt
c, are displacement, velocity and accel-

eration nodal vectors at time t, respectively. It should be
noted that the contact force measured at time t, F t

c is not
available due to the communication delays in a HiL test,
so that the value measured in the previous time step F t−1

c
is used as the external force (see Section 3).

This problem can be expressed on a modal basis by
solving the generalized eigenvalue problem. If Φ denotes
the eigenvector matrix, the transformation between nodal
displacement and the modal basis can be written as:

ut
c = Φ qt

c (2)

where qt
c is the vector of modal coordinates defining the

position at time t. The same transformation applies to ve-
locity and acceleration. Matrix Φ dimension is ndof×nmod,
nmod being the number of modes. This number can be cho-
sen as detailed in [17] to obtain accurate solutions (com-
pared with the complete solution) at a lower computa-
tional cost.

Eq. (1) is solved using the Newmark integration scheme
(see [16] for details). Given the position, velocity and ac-
celeration at time t − 1, and assuming that the external
force F t−1

c is known, the solution at time t can be written
as:

Kitcut
c = mUut−1

c + mVu̇t−1
c + mAüt−1

c + Nt
c

T
F t−1

c (3)
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where Kitc, mU, mV and mA are constant matrices de-
pending on the integration scheme parameters and mass,
damping and stiffness matrices (see Appendix A). Once
the position is obtained, the velocity and acceleration at
time t can be recovered. Eq. (3) can be projected in the
modal basis as:

K̂itcqt
c =m̂Uqt−1

c + m̂Vq̇t−1
c + m̂Aq̈t−1

c + N̂t T
c F t−1

c

K̂itc = ΦTKitcΦ
m̂U = ΦTmUΦ m̂V = ΦTmVΦ

m̂A = ΦTmAΦ N̂t
c = ΦTNt

c
(4)

Given that a proportional damping model is used, the
projected matrices are diagonal, and can be precomputed
in an offline stage. The computational cost is reduced to
multiplying and adding vectors of dimension nmod. All this
allows Eq. (4) to be evaluated much faster than real-time.

It is convenient to define the space state vector of the
catenary using displacement, velocity and acceleration as:

xc =

 qc
q̇c
q̈c

 (5)

Using the above definition, Eq. (4) can be written in state
space form as:

xt
c = Ac xt−1

c + Bc F t−1
c (6)

where the matrices are defined in Appendix A. It should be
noted that every block in Ac and Bc is a diagonal matrix.

The contact point height at time t, zt
c, is computed

from the modal solution and static configuration as:

zt
c = Nt

c z0
c + N̂t

c qt
c (7)

2.2. Dropper slackening
Eq. (3) (or Eq. (4) in modal coordinates) gives the

nodal displacements at time t assuming a linear behavior of
the catenary. However, the droppers behave non-linearly
as they can only transmit traction loads, i.e. the compres-
sive load transmitted by each dropper j due to dynamic
displacements, should be lower than the static traction.
If F0

d is the vector of dimension nd containing the static
traction of each dropper, this condition can be expressed
as: (

F0
d
)

j
+

(
Idc qt

c
)

j
≥ 0 j = 1, . . . , nd (8)

where Idc is a full matrix, with dimensions nd × nmod,
that condenses the influence of modal degrees of freedom
(computed from Eq. (4)) on the traction force generated
in each dropper, precomputed in the offline stage (see [16]
for details). Operator (·)j extracts the j-th component of
the vector. This equation must be verified every time step.

Should Eq. (8) fail for a given dropper j, a traction
correction force vector Ft

d is computed for that time step

t. This is nonzero only in the rows of slackened droppers,
and is applied as an external force to the catenary model.
Using the time integration solver offline, we can obtain
the effect of each dropper force in the nodal displacement.
In addition, a change in displacements affects the drop-
per force. This influence, i.e. the effect of a unit dropper
external force in the traction of other droppers, can be con-
densed in the matrix Idd with dimension nd × nd, which
can be computed offline. The correction force is thus ob-
tained by solving a system of equations of the order of the
number of slackened droppers:(

F0
d
)

j
+

(
Idc qt

c
)

j
+

(
Ft

d
)

j
+

(
Idd Ft

d
)

j
= 0

for j ∈ slackened droppers
(9)

2.3. Interaction with pantograph
The penalty method is a technique commonly used

in simulation codes to solve the contact interaction be-
tween a numerical pantograph model and the catenary
contact wire [20]. In this method, a contact stiffness kc
is introduced between the moving catenary contact point
(height zc) and the degree of freedom of the pantograph
head model up (usually the upper mass of a lumped mass
model). The contact force is computed as:

F t
c = kc

(
zt

c − ut
p
)

(10)

The contact stiffness kc is a user-defined parameter. A
low kc value results in a large error of the contact con-
straint, causing the position of the pantograph head to
differ from that of the catenary. On the other hand, exces-
sive contact stiffness leads to numerical instabilities in the
integration scheme. The problem is exacerbated if an ex-
plicit solver is used, because the catenary and pantograph
dynamics are computed independently with a delay: the
contact wire position zt

c is obtained by solving the cate-
nary dynamics with the contact force of the previous time
step (F t−1

c , Eq. (3)). This position is imposed in the up-
per mass of the pantograph through the contact spring kc,
to obtain ut

p and the next applied contact force with Eq.
(10). In general, stiffness values higher than 100.000 N/m
make the explicit method unstable (see [14] for example).
In the regulation EN50318 this parameter is set to 50.000
N/m.

In a HiL context, the pantograph model is replaced
by the real contact force, and this force is applied to the
catenary with a delay of at least one time step, similar
to an explicit solver. This contact force is measured as
the interaction between the load cell contact pad and the
pantograph strips. This interaction can be analysed as a
penalty method with an unknown penalty stiffness. If the
real contact stiffness is too high, the HiL test will become
unstable. It is therefore desirable to have control of the
interaction stiffness value. For that purpose, a virtual in-
termediate mass mi is defined, receiving the measured con-
tact force, and interacting with the contact wire through
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a virtual spring with stiffness ki as depicted in Figure 2. A
controlled interaction stiffness value improves the stability
of the HiL test and is the main reason for including this
additional degree of freedom in the model. As shown in
Section 2.4, the influence of the interaction mass is anal-
ysed and it is concluded that it has a negligible effect on
the filtered contact force.

F t−1
c

Interaction force F t−1
i

ut
i

zt
c z0

c mi

ki

Figure 2: Interaction of a virtual interaction mass with the contact
wire.

The virtual mass is a second-order system whose dis-
placement ui responds to the following equation:

miüi + ciu̇i + kiui = kizc + Fc (11)

where zc and Fc are the reference position of the spring
(the contact point height) and the external contact force
from the pantograph, respectively. ci is the damping of
this subsystem.

For each time step t, the interaction between the vir-
tual mass and the catenary is computed in several steps.
First, the position of the catenary that will be sent to the
actuator zt

c is computed by solving Eq. (4), in which the
force F t−1

c is replaced by the interaction force F t−1
i (as

shown in Figure 2) and using Eq. (7).
The position of the interaction mass ut

i is then obtained
by solving Eq. (11), using the computed catenary position
zt

c and the measured contact force F t−1
c . Given this posi-

tion, the interaction force can be obtained as:

F t
i = ki

(
zt

c − ut
i
)

(12)

2.4. Validation of the catenary
The proposed model runs in real time every time step

in a PC Intel® Core™ i9-9900K CPU, 3.6 GHz, 64 GB
RAM. There are however some features of the model that
affect the contact force, such as the interaction mass and
the explicit consideration of the contact force. In order to
assess the model, the simulation results have been com-
pared with PACDIN [19], a finite element code validated
according to EN50318 [15]. Several catenary configura-
tions and vehicle velocities have been tested, leading to
the same conclusions as the results presented here. Figure
1 shows the section of a stitched catenary based on the
Spanish AVE, which contains 16 equal internal spans of
L = 65 m and 7 droppers per span. There are two tran-
sition spans at the beginning and end of the section, with

d.o.f. m (kg) c (Ns/m) k (N/m)
1 6.6 0 7000
2 5.8 0 14100
3 5.8 70 80

Table 1: Lumped parameters of the pantograph model for the SW
catenary.

different dropper distributions. The complete data of the
catenary are provided in Appendix B.

The catenary interacts with a lumped mass model of
the DSA-380 pantograph (see parameters in Table 1). The
simulation starts with the pantograph at the beginning
of the third span. Figure 3 compares the contact force
obtained from both the real-time model and the validated
software, in the ten central spans. The graphs show good
agreement of the forces for both the 20 Hz filtered and
non-filtered data. An error index has been defined as the
standard deviation of the difference, i.e. the square root
of the sum of squared difference divided by the number of
points, Np:

ϵ =

√∑Np

i=1 (F i)2 −
(
F i

ref
)2

Np
(13)

mi (kg) ci (Ns/m) ki (N/m)
0.05 50 50000

mm (kg) cm (Ns/m) km (N/m)
10 1800 450000

mp (kg) cp (Ns/m) kp (N/m)
5.3 10 240000

Table 2: Parameters of the virtual interaction mass, motor model
and pantograph model for observer.

The parameters of the virtual mass are heuristically
defined to have good agreement between the reference so-
lution and the real-time model (see 2). An error index
of ϵ = 7 % with respect to the mean force is obtained for
the filtered contact force, and ϵ = 20 % for the non-filtered
with good agreement in the frequency content up to 20 Hz.
The interaction mass of the real-time model acts as a phys-
ical filter of the contact force, attenuating the frequencies
above 20 Hz.

3. Components of the HiL test rig

Figure 4 shows a scheme of the HiL components and
workflow. A linear electric motor imposes the vertical dis-
placement computed by the virtual catenary. The motor
interacts with the pantograph strip bands through contact
pads containing a load cell that measures the contact force.
A more detailed description of the test rig components can
be found in [21].

The NI-cRIO, on the left hand side, is the real-time
controller that manages all communication with the other
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Figure 3: Comparison of the real-time model and PACDIN software contact force in the 10 central spans. a) 20 Hz filtered force, b) non-filtered
force and c) non-filtered frequency content.
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Figure 4: Scheme of the Hardware-in-the-Loop components and workflow.
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components through an EtherCat real-time bus. The blue
squares represent a synchronised timed loop with ∆t = 2
ms controlled by the real-time cRIO. At the beginning of
each loop, the contact force F t−1

c and the current time
step t are sent via the EtherCat bus from the cRIO to the
catenary PC. The PC runs the catenary model, including
the interaction mass. It must compute the new catenary
position zt

c in less than one time step, and send it back to
the cRIO before the end of the timed loop. Additionally,
at the beginning of the loop, the catenary position from
the previous time step zt−1

c is sent to the motor driver.
There are two pure delays of 2 ms in the test rig workflow
due to communication: the contact force used at time step
t was measured in step t − 1, and the position reference
sent was computed in the previous time step.

The motor driver also provides the current position
of the linear motor um to the EtherCat bus. The load
cells’ measurement of the contact forces on the pantograph
strips are also available on the bus. These variables are
updated at a higher rate than the timed loop. Analog-to-
digital converter filters the acquired force through a 100 Hz
low-pass filter.

The motor driver commands the linear motor with an
internal PID with tuneable parameters. It is assumed that
the actuator can be modelled as a second-order system
over the bandwidth of interest, and is used to design the
LQG controller. The model was experimentally identified
from the step response and the parameters are shown in
Table 2. The steady state value of the output is 1, the peak
time is 12 ms and the peak value 1.3. The settle time is 40
ms. The transfer function of the motor response um with
respect to the motor reference zm can be written in the
Laplace domain as:

Gm (s) = um
zm

= km
mm s2 + cm s + km

(14)

4. LQG control

The HiL test components are split into two subsystems.
The first one (Subsystem 1) is the virtual catenary model
that receives the force from the interaction mass F t−1

i , and
provides the position of the contact point zt

c solving Eq.
(4) (replacing the contact force by the interaction force)
as depicted in Figure 2. This subsystem is solved with
an explicit integration scheme as the force comes from the
previous time step. The stability of the integration scheme
was analysed for different model parameters and catenary
configurations. It can be concluded that for a time in-
crement of ∆t = 2 ms, the subsystem remains stable if
the virtual catenary interacts with the interaction mass
through a sufficiently small stiffness ki. Conversely, a very
low stiffness value restricts the accuracy of the simulation.
As highlighted in Section 2.4, the contact stiffness pro-
vided in Table 2 ensures a low contact force error while
preserving the stability of Subsystem 1.

On the other hand, Subsystem 2 includes the interac-
tion mass, linear motor and pantograph (see block diagram
in Figure 5). The interaction mass receives the contact
force from the pantograph Fc, and the reference position
from the catenary zc, and provides the motor reference to
be achieved zm = ui, solving Eq. (11), and considering
the communication delay. This equation can be expressed
in the Laplace domain as the transfer function Gi. The
motor is a second- order system with the transfer function
of Eq. (14) and is attached to the contact pads that inter-
act with the pantograph. This is shown here as a transfer
function Gp for illustration, although the real pantograph
behaviour is more complex.

The real pantograph interacts with the force sensor
through contact pads (see Figure 4). As shown in the
block diagram of Subsystem 2, the measured contact force
is recovered from the contact pad stiffness kh and the po-
sition of the actuator and the pantograph contact strips
as:

Fc = kh (up − um) (15)

Subsytem 2 can be unstable due to delays and high
contact stiffness in the contact pads kh. As this also makes
the virtual catenary simulation unstable, a controller is
proposed to stabilize Subsystem 2 with the idea that, if
the motor accurately tracks the reference of the interaction
mass, Subsystem 2 will be stable, thereby ensuring overall
system stability.

Here we use a classical [22] state-space Linear Quadratic
Regulator (LQR) controller for Subsystem 2, as depicted
in Figure 6. The catenary position zc is considered as
an external perturbation, and the error is the difference
between the motor reference (position of the interaction
mass) and the achieved motor position, Error = ui − um.
The LQR controller will try to reduce the error through
the action ulqr added to the motor reference. This action
depends on the full state of Subsystem 2, therefore a linear
pantograph model is required. Since the idea is to obtain a
regulator that can control different pantographs, a simple
second order model is proposed for the pantograph, with
the following transfer function:

Gp (s) = up
um

= kp
mps2 + cps + kp

(16)

The parameters of the pantograph model (see Table
2) are heuristically estimated from experimental tests, the
pad stiffness kp being the parameter that most compro-
mises stability. The mass chosen to be equivalent to that
of the pantograph strips, and a small damping is chosen.
In a real HiL test, differences between the real pantograph
and the model can be considered as external perturbations
of the system.

The LQR calculates the optimal gain matrix that si-
multaneously optimizes the error of the linear motor fol-
lowing its reference and the control action itself. The cost
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Figure 6: Block diagram of LQG controller for subsystem 2.

function can be expressed as:

min
ulqr

∞∑
t=1

Q
(
ut

i − ut
m

)2 + R
(
ut

lqr

)2 (17)

where parameters penalizing the error Q and the action R
are chosen by the user. There is a balance between a more
aggressive and potentially unstable control with lower po-
sition error, if Q increases or R decreases, and a smoother
control with a higher position error in the opposite tuning.
The parameters used in the experimental tests are shown
in Table 3 and are finely tuned heuristically. They depend
on the physical characteristics of the test rig, such as the
linear motor’s internal controller, the friction of the lin-
ear guides, the total moving mass, and the stiffness of the
contact pad. In our test rig, there is a range in which the
controller stabilizes the system. If Q is increased, the po-
sition error is penalized more, and the controller attempts
to increase its action and frequency content to reduce the
error. Due to the practical limited bandwidth of the linear
motor and the high frequencies excited in the test bench,
the system may become unstable. On the other hand, if
Q is reduced, the controller allows for a higher position er-
ror, causing a delay in the pantograph position relative to
the catenary. An excessive delay may cause the catenary
response to become unstable.

The optimal gain of the LQR depends on the full state,
which is not available to the controller. A Kalman Filter
[22, 23] is used as the state observer to obtain the state
from measurements of the interaction mass and motor po-
sitions. The parameters tuning the KF design are given in
the following subsection.

R Q Rkf Qkf
1 5 10−3 10

Table 3: Parameters of the LQR controller and KF observer.

4.1. State-space equations
The discrete-time state-space model of the LQG con-

troller and the KF observer are obtained by applying the
Newmark integration scheme to the system depicted in
Figure 6. The same procedure used in Section 2.1 is fol-
lowed to derive the state-space model of the catenary linear
part (Eq. (5) and Appendix A).

From Eq. (11) the state of the interaction mass at time
t + 1 can be written as a function of the previous state,
matrix Ai and vector Bi, and the inputs of the system.
Inputs are the catenary contact point position, which is
considered as a perturbation of the system, and the contact

8



force that has a delay of one time step:

xt+1
i = Ai xt

i + Bi zt+1
c + 1

ki
Bi F t

c (18)

where the state vector of the interaction mass is:

xi = ( ui u̇i üi )T (19)

The linear motor state-space equation can be obtained
from the transfer function, Eq. (14), by again using the
same Newmark integration scheme. The inputs of this
system are the position of the interaction mass ui and the
control action zm, which are delayed by one time step.

xt+1
m = Am xt

m + Bm Iu xt
i + Bm zt

m (20)

where zt
m is the delayed LQR controller action ulqr, which

is updated every time step

zt+1
m = ut+1

lqr (21)

the state vector of the motor is defined as:

xm = ( um u̇m üm )T (22)

and the vector Iu extracts the first component of the in-
termediate mass state, i.e. its displacement

Iu = ( 1 0 0 ) (23)

In the internal model, the pantograph response de-
pends on the position of the linear motor, while the state-
space equation is derived from Eq. (16)

xt+1
p = Ap xt

p + Bp Iu xt+1
m + 1

kh
Bp f t+1

p (24)

where an additional perturbation force fp is added to con-
sider unmodelled dynamics of the pantograph. This per-
turbation is used in the KF design. The state vector of
the pantograph is:

xp = [ up u̇p üp ]T (25)

The last term to complete the state-space equation is
the contact force, defined in Eq. (15). Using this definition
in Eq. (18), and substituting Eq. (20) in Eq. (24), the
following system is obtained:

xt+1 = A xt + Bz zt+1
c + Bu ut+1

lqr + Bf Qkf f t+1
p (26)

where A, Bz, Bu and Bf are defined in the Appendix C.
Qkf is used in the KF design and the global state vector
is:

x =
[

xT
i xT

m xT
p zm

]T (27)
The observed variables of the system are the positions

of the interaction mass and the motor:
yt = C xt + I Rkf w with

yt =
[

ut
i

ut
m

]
C =

[
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

] (28)

where w is the measurement noise, which is assumed to
be equal for both measured variables, I is the 2x1 identity
vector and Rkf the variance of the noise. Parameters Qkf

and Rkf are shown in Table 3.

5. Experimental results

The LQG controller is implemented in the test rig de-
picted in Figure 4, in the same PC containing the virtual
catenary model. The dimension of the controller and ob-
server matrices are of the order of Subsystem 2 plus the
delays and can be solved with low computational cost.

A DSA-380 Steinmann pantograph is tested with the
virtual catenary model described in Section 2.4. The test
starts at the beginning of the 3rd span, and runs until
the 16th span. Figure 7 shows the contact force in the 10
central catenary spans for a simulation at V = 300 km/h.
In Figure 8 the filtered contact force in the 10 central spans
is depicted for train speeds of V = 275 km/h and V =
250 km/h.

5.1. Validation of experimental setup
To assess the HiL test contact force F HiL

c (shown in
Figure 7), it should be compared with the real solution
of the problem, i.e. the real tested pantograph interact-
ing with the catenary without neither the interaction mass
nor the controller. This exact solution can be iteratively
obtained as follows. The HiL test contact force F HiL

c is
applied offline to the catenary numerical model in the sim-
ulation software PACDIN, without any pantograph model
as an external given force. The simulation provides the
position of the contact wire zIter

c for the full section and
all time steps. This profile is applied to the linear motor
in contact with the real pantograph strips without force
feedback, and the contact force, F Iter

c , is recorded. The
iterative method is schematically shown in Figure 9. This
process is carried out until convergence of the contact force
and the converged value is taken as reference for compari-
son. In practice, the changes in the contact force in every
iteration are small and convergence is achieved in about 3-
5 iterations. Figure 10 compares the contact force in time
and frequency domains. Good agreement can be seen until
20 Hz, with an error index lower than 6 %. The results in
Figure 10 can be compared to Figure 3, which shows sim-
ulation results using a lumped mass pantograph model.
Even though the range of variation of the contact force is
similar in the time domain, the frequency content is dif-
ferent. This test could be used to assess the validity of
pantograph model.

Figure 11 compares the reference position of the inter-
action mass sent to the motor by the real-time model and
the actual position attained. It can be seen that although
the reference position has a higher frequency content than
the motor position, the actuator is able to follow its refer-
ence with an error of less than 1 mm every time step.
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Figure 7: 20 Hz filtered and non-filtered contact force in the 10 central spans of the catenary at V=300 km/h.
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Figure 8: 20 Hz filtered contact force in the 10 central spans of the catenary at V = 275 km/h and V = 250 km/h .

Full section: t = 1, 2, . . .

F Iter
c

zc

PACDIN

Figure 9: Iterative HiL test. The position computed for a full section
is imposed in the test rig, and the experimental force is used to run
a new simulation to obtain the next position.

6. Conclusions

The paper proposes a method for HiL testing of railway
pantographs. The catenary model is based on modal de-
composition and can handle dropper slackening. The pro-
posed methodology can model any catenary section config-
uration, including presag, geometry optimization, installa-
tion errores, etc. It can run in real time for a time step
of ∆t = 2 ms. Despite the modal decomposition and in-
troduction of an interaction mass between the pantograph
and catenary, the model’s performance is good up to a fre-
quency of 20 Hz, with good agreement between the model
and a validated code in the filtered contact force.

The interaction mass allows decoupling the real-time
catenary model from other components in the test rig.
The interaction of the catenary with the interaction mass
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Figure 11: Comparison of the reference and achieved position of the linear motor in the 10 central spans of the catenary at V=300 km/h.

makes this subsystem stable, for the given mass, stiffness
and damping. These parameters are tuned to obtain a
good balance between stability and accuracy at higher fre-
quencies.

The motor imposes the reference position on the panto-
graph with communication delays that can make the sys-
tem unstable. An LQG controller is introduced to stabi-
lize the system. The controller parameters are first cho-
sen through simulation of the system, and then are finely
tuned heuristically. The results show a good performance
of the HiL test in the frequency range of 0-20 Hz.

Appendix A. Time integration parameters

The Newmark time integration scheme [24] is used to
solve Eq. (1). It depends on two defined parameters and
the time increment ∆t. In this work the middle point rule
(averaged constant acceleration) is used, namely γ = 0.5

and β = 0.25. The time increment is chosen ∆t = 2 ms.
Matrices used in Eq. (3) are defined as:

mU = cUM Mc + cUCCc

mV = cV M Mc + cV CCc

mA = cAM Mc + cACCc

Kitc = cM Mc + cCCc + Kc

(A.1)

where the constants are defined as:

cUM = 1
β∆t2 cV M = 1

β∆t
cAM = 1 − 2β

2β

cUC = γ

β∆t
cV C = γ

β
− 1 cAC = −∆t(1 − γ

2β
)

cM = 1
β∆t2 cC = γ

β∆t

The state matrices that give the position, velocity and
acceleration at time step t from the previous step can be

11



expressed as:

Ac =

 Kit
−1
c mU . . .

cV U

(
Kit

−1
c mU − I

)
. . .

cAU

(
Kit

−1
c mU − I

)
. . .

Kit
−1
c mV Kit

−1
c mA

cV U Kit
−1
c mV + cV V I cV U Kit

−1
c mA + cV AI

cAU Kit
−1
c mV + cAV I cAU Kit

−1
c mA + cAAI


(A.2)

Bt
c =

 Kit
−1
c N̂t T

c
0
0

 (A.3)

where I is the identity matrix, 0 is the null matrix, and
constants are defined as:

cV U = γ

β∆t
cV V = 1 − γ

β
cV A = ∆t(1 − γ

2β
)

cAU = 1
β∆t2 cAV = − 1

β∆t
cAA = 1 − 1

2β

Appendix B. Catenary data

The dropper spacing of this catenary is depicted in
Table B.4 and Table B.5 gives the material properties of
the different cables that form the SW catenary.

The geometric input parameters needed to define the
SW catenary model are shown in Table B.6.

Appendix C. State-space matrices

The matrices in Eq. (26) are defined as follows:

A =


Ai −kh

ki
BiIu

kh

ki
BiIu 0

BmIu Am 0 Bm
BpIuBmIu BpIuAm Ap BpIuBm

0 0 0 0


(C.1)

Bz =


Bi
0
0
0

 Bu =


0
0
0
1

 Bf =


0
0

1
kh

Bp

0


(C.2)
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1 2 3 4 5 6 7
Longitudinal position of droppers (m) 6 15.48 24.18 32.5 40.82 49.52 59

Table B.4: Dropper spacing along the span.

Mass/unit Axial stiffness Bending stiffness Tension
length (kg/m) EA (MN) EI(Nm2) (kN)

Messenger wire 0.864 1.042 136.09 15.75
Contact wire 1.374 1.65 238.70 31.5
Stitch wire 0.091 0.11 – 3.5
Droppers 0.091 0.11 – –
Steady arm 1 1.1 – –

Table B.5: Material properties of the SW catenary components.

Input parameter Value
Span length 65 m
Pre-sag 0 m
Encumbrance 1.3 m
Messenger wire stagger 0 m
Messenger wire clamp 0.2125 kg
Stitch wire length 18 m
Contact wire stagger 0 m
Contact wire clamp 0.2125 kg
Steady arm length 1.15 m

Table B.6: Geometric data of the SW catenary model.
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